MLC-based penumbra softener of EDW borders to reduce junction inhomogeneities.

J Appl Clin Med Phys

BC Cancer Agency, Fraser Valley Centre, Surrey, BC, Canada, V3V 1Z2.

Published: May 2017

Junctions of fields are known to be susceptible to developing cold or hot spots in the presence of even small geometrical misalignments. Reduction of these dose inhomogeneities can be accomplished through decreasing the dose gradients in the penumbra, but currently it cannot be done for enhanced dynamic wedges (EDW). An MLC-based penumbra softener was developed in the developer mode of TrueBeam linacs to reduce dose gradients across the side border of EDWs. The movement of each leaf was individually synchronized with the movement of the dynamic Y jaw to soften the penumbra in the same manner along the entire field border, in spite of the presence of the dose gradient of the EDW. Junction homogeneity upon field misalignment for side-matched EDWs was examined with the MV imager. The fluence inhomogeneities were reduced from about 30% per mm of shift of the field borders for the conventional EDW to about 2% per mm for the softened-penumbra plan. The junction in a four-field monoisocentric breast plan delivered to the Rando phantom was assessed with film. The dose inhomogeneities across the junction in the superior-inferior direction were reduced from about 20% to 25% per mm for the conventional fields to about 5% per mm. The dose near the softened junction of the breast plan with no shifts did not deviate from the conventional plan by more than about 4%. The newly-developed softened-penumbra junction of EDW (and/or open) fields was shown to reduce sensitivity to misalignments without increasing complexity of the planning or delivery. This methodology needs to be adopted by the manufacturers for clinical use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5689845PMC
http://dx.doi.org/10.1002/acm2.12082DOI Listing

Publication Analysis

Top Keywords

mlc-based penumbra
8
penumbra softener
8
dose inhomogeneities
8
dose gradients
8
breast plan
8
junction
6
dose
6
edw
5
softener edw
4
edw borders
4

Similar Publications

Purpose: In the previous treatment planning system (TPS) for CyberKnife (CK), multileaf collimator (MLC)-based treatment plans could be created only by using the finite-size pencil beam (FSPB) algorithm. Recently, a new TPS, including the FSPB with lateral scaling option (FSPB+) and Monte Carlo (MC) algorithms, was developed. In this study, we performed basic and clinical end-to-end evaluations for MLC-based CK tumor-tracking radiotherapy using the MC, FSPB+, and FSPB.

View Article and Find Full Text PDF

Purpose: Dosimetry of small fields defined by stereotactic cones remains a challenging task. In this work, we report the results of commissioning measurements for the new Elekta stereotactic conical collimator system attached to the Elekta VersaHD linac and present the comparison between the measured and Monte Carlo (MC) calculated data for the 6 MV FFF beam. In addition, relative output factor (ROF) dependence on the stereotactic cone aperture variation was studied and penumbra comparison for small MLC-based and cone-based fields was performed.

View Article and Find Full Text PDF

Junctions of fields are known to be susceptible to developing cold or hot spots in the presence of even small geometrical misalignments. Reduction of these dose inhomogeneities can be accomplished through decreasing the dose gradients in the penumbra, but currently it cannot be done for enhanced dynamic wedges (EDW). An MLC-based penumbra softener was developed in the developer mode of TrueBeam linacs to reduce dose gradients across the side border of EDWs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!