Genetic structure and signatures of selection in grey reef sharks (Carcharhinus amblyrhynchos).

Heredity (Edinb)

Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia.

Published: September 2017

With overfishing reducing the abundance of marine predators in multiple marine ecosystems, knowledge of genetic structure and local adaptation may provide valuable information to assist sustainable management. Despite recent technological advances, most studies on sharks have used small sets of neutral markers to describe their genetic structure. We used 5517 nuclear single-nucleotide polymorphisms (SNPs) and a mitochondrial DNA (mtDNA) gene to characterize patterns of genetic structure and detect signatures of selection in grey reef sharks (Carcharhinus amblyrhynchos). Using samples from Australia, Indonesia and oceanic reefs in the Indian Ocean, we established that large oceanic distances represent barriers to gene flow, whereas genetic differentiation on continental shelves follows an isolation by distance model. In Australia and Indonesia differentiation at nuclear SNPs was weak, with coral reefs acting as stepping stones maintaining connectivity across large distances. Differentiation of mtDNA was stronger, and more pronounced in females, suggesting sex-biased dispersal. Four independent tests identified a set of loci putatively under selection, indicating that grey reef sharks in eastern Australia are likely under different selective pressures to those in western Australia and Indonesia. Genetic distances averaged across all loci were uncorrelated with genetic distances calculated from outlier loci, supporting the conclusion that different processes underpin genetic divergence in these two data sets. This pattern of heterogeneous genomic differentiation, suggestive of local adaptation, has implications for the conservation of grey reef sharks; furthermore, it highlights that marine species showing little genetic differentiation at neutral loci may exhibit patterns of cryptic genetic structure driven by local selection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5555095PMC
http://dx.doi.org/10.1038/hdy.2017.21DOI Listing

Publication Analysis

Top Keywords

genetic structure
20
grey reef
16
reef sharks
16
australia indonesia
12
genetic
10
signatures selection
8
selection grey
8
sharks carcharhinus
8
carcharhinus amblyrhynchos
8
local adaptation
8

Similar Publications

Lupus disease activity state and Foxp3 gene polymorphism.

Egypt J Immunol

January 2025

Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.

The autoimmune disease systemic lupus erythematosus (SLE) is presented with many clinical symptoms. The transcription factor fork head box protein 3 (Foxp3) is expressed on regulatory T (T-reg) cells and essential for its development and function. Functional single-nucleotide polymorphisms (SNPs) in the Foxp3-3279 (rs3761548 C/A) gene influence SLE pathogenesis.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a disease of the central nervous system, characterized by progressive demyelination and inflammation. MS is characterized by immune system attacks on the myelin sheath surrounding nerve fibers. Genome-wide association studies revealed a polymorphism in the signal transducer and activator of transcription 4 (STAT4) gene that increases risk for MS.

View Article and Find Full Text PDF

Coccidiosis, a parasitic disease caused by Eimeria protozoa that parasitizes intestinal tissues of chicken, poses a challenge to the development of the poultry industry. circRNAs are a class of circular RNA macromolecules crucial in the immune response to pathogens. Previous studies have shown that gga-miR-2954 inhibits the inflammatory response to Eimeria tenella (E.

View Article and Find Full Text PDF

Application of herbicide-degrading bacteria is an effective strategy to remove herbicide in soil. However, the ability of bacteria to degrade a herbicide is often severely limited in the presence of other pesticide. In this study, the atrazine-degrading strain Klebsiella varicola FH-1 and acetochlor-degrading strain Bacillus Aryabhatti LY-4 were used as parent strains to construct the recombinant RH-92 strain through protoplast fusion technology.

View Article and Find Full Text PDF

Crystal structure of the anti-CRISPR protein AcrIE7.

Biochem Biophys Res Commun

January 2025

Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China; Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China. Electronic address:

Bacterial adaptive immunity, driven by CRISPR-Cas systems, protects against foreign nucleic acids from mobile genetic elements (MGEs), like bacteriophages. The type I-E CRISPR-Cas system employs the Cascade (CRISPR-associated complex for antiviral defense) complex for target DNA cleavage, guided by crRNA. Anti-CRISPR (Acr) proteins, such as AcrIE7, counteract this defense by inhibiting Cascade activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!