Regional differences in the response to cholera toxin were evaluated in rat jejunum, ileum, and colon in vivo. Ligated intestinal loops were exposed to a supramaximal concentration of cholera toxin for 5 hr, and net fluid transport, adenosine 3',5'-monophosphate (cAMP) concentrations, and adenylate cyclase and phosphodiesterase activities of mucosal homogenates were determined. The fluid transport response and the specific activities of adenylate cyclase (with and without cholera toxin) and phosphodiesterase declined progressively from the jejunum to the colon. In contrast, cAMP concentrations (with and without cholera toxin) were lowest in the jejunum and highest in the colon. These results demonstrate that cAMP concentrations of the total mucosal homogenate do not parallel cholera toxin-induced fluid secretion in the three intestinal segments. Rather, the activities of adenylate cyclase and phosphodiesterase suggest a relation between fluid secretion and the turnover of cAMP.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF01535793DOI Listing

Publication Analysis

Top Keywords

cholera toxin
20
camp concentrations
12
adenylate cyclase
12
toxin net
8
net fluid
8
rat jejunum
8
jejunum ileum
8
ileum colon
8
fluid transport
8
cyclase phosphodiesterase
8

Similar Publications

The parabrachial nucleus (PB), located in the dorsolateral pons, contains primarily glutamatergic neurons that regulate responses to a variety of interoceptive and cutaneous sensory signals. One lateral PB subpopulation expresses the Calca gene, which codes for the neuropeptide calcitonin gene-related peptide (CGRP). These PB neurons relay signals related to threatening stimuli such as hypercarbia, pain, and nausea, yet their inputs and their neurochemical identity are only partially understood.

View Article and Find Full Text PDF

Objectives: The objective of this study is to investigate lipopolysaccharid-binding protein (LBP), zonulin and calprotectin as markers of bacterial translocation, disturbed gut barrier and intestinal inflammation in patients with radiographic axial spondyloarthritis (r-axSpA) during tumour necrosis factor inhibitor (TNFi) therapy and to analyze the association between disease activity, response to treatment and biomarker levels.

Methods: Patients with active r-axSpA of the German Spondyloarthritis Inception Cohort starting TNFi were compared with controls with chronic back pain. Serum levels of LBP, zonulin and calprotectin were measured at baseline and after 1 year of TNFi therapy.

View Article and Find Full Text PDF

Rotaviruses, non-enveloped viruses with a double-stranded RNA genome, are the leading etiological pathogen of acute gastroenteritis in young children and animals. The P[11] genotype of rotaviruses exhibits a tropism for neonates. In the present study, a binding assay using synthetic oligosaccharides demonstrated that the VP8* protein of P[11] porcine rotavirus (PRV) strain 4555 binds to lacto-N-neotetraose (LNnT) with the sequence Galβ1,4-GlcNAcβ1,3-Galβ1,4-Glc, one of the core parts of histo-blood group antigen (HBGA) and milk glycans.

View Article and Find Full Text PDF

Developing intranasal vaccines against pandemics and devastating airborne infectious diseases is imperative. The superiority of intranasal vaccines over injectable systemic vaccines is evident, but developing effective intranasal vaccines presents significant challenges. Fusing a protein antigen with the catalytic domain of cholera toxin (CTA1) and the two-domain D of staphylococcal protein A (DD) has significant potential for intranasal vaccines.

View Article and Find Full Text PDF

Secretory diarrhea, a major global health concern, particularly among young children, is often characterized by excessive chloride secretion through the cystic fibrosis transmembrane conductance regulator (CFTR) channel. Nornidulin, a fungus-derived natural product from Aspergillus unguis, has previously been shown to inhibit cAMP-induced Cl- secretion in T84 cells (human intestinal cell lines). However, the cellular mechanism of nornidulin in inhibiting cAMP-induced Cl- secretion and its anti-secretory efficacy is still unknown especially in a human colonoid model, a preclinical model recapitulating intestinal physiology in humans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!