Monocarboxylate transporter 1 (MCT1) is an importer of monocarboxylates such as lactate and pyruvate and a marker of mitochondrial metabolism. MCT1 is highly expressed in a subgroup of cancer cells to allow for catabolite uptake from the tumor microenvironment to support mitochondrial metabolism. We studied the protein expression of MCT1 in a broad group of breast invasive ductal carcinoma specimens to determine its association with breast cancer subtypes and outcomes. MCT1 expression was evaluated by immunohistochemistry on tissue micro-arrays (TMA) obtained through our tumor bank. Two hundred and fifty-seven cases were analyzed: 180 cases were estrogen receptor and/or progesterone receptor positive (ER+ and/or PR+), 62 cases were human epidermal growth factor receptor 2 positive (HER2+), and 56 cases were triple negative breast cancers (TNBC). MCT1 expression was quantified by digital pathology with Aperio software. The intensity of the staining was measured on a continuous scale (0-black to 255-bright white) using a co-localization algorithm. Statistical analysis was performed using a linear mixed model. High MCT1 expression was more commonly found in TNBC compared to ER+ and/or PR+ and compared to HER-2+ ( < 0.001). Tumors with an component were less likely to stain strongly for MCT1 ( < 0.05). High nuclear grade was associated with higher MCT1 staining ( < 0.01). Higher T stage tumors were noted to have a higher expression of MCT1 ( < 0.05). High MCT1 staining in cancer cells was associated with shorter progression free survival, increased risk of recurrence, and larger size independent of TNBC status ( < 0.05). MCT1 expression, which is a marker of high catabolite uptake and mitochondrial metabolism, is associated with recurrence in breast invasive ductal carcinoma. MCT1 expression as quantified with digital image analysis may be useful as a prognostic biomarker and to design clinical trials using MCT1 inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5376582PMC
http://dx.doi.org/10.3389/fcell.2017.00027DOI Listing

Publication Analysis

Top Keywords

mct1 expression
20
mct1
14
invasive ductal
12
ductal carcinoma
12
mitochondrial metabolism
12
breast cancer
8
cancer cells
8
catabolite uptake
8
expression mct1
8
breast invasive
8

Similar Publications

The balance between CD8 T cells and regulatory T (Treg) cells in the tumor microenvironment (TME) plays a crucial role in the immune checkpoint inhibition (ICI) therapy in gastric carcinoma (GC). However, related factors leading to the disturbance of TME and resistance to ICI therapy remain unknown. In this study, we applied N6-methyladenosine (m6A) small RNA Epitranscriptomic Microarray and screened out 3'tRF-AlaAGC based on its highest differential expression level and lowest inter-group variance.

View Article and Find Full Text PDF

Regulation of lactate accumulation in bovine mammary epithelial cells by LPS-induced HIF-1α/MCT1 pathway.

Microb Pathog

December 2024

Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 210095, Nanjing, China. Electronic address:

Lactate has been increasingly recognized for its role in diseases progression, necessitating a deeper understanding of its metabolic processes and regulatory mechanisms. This study aimed to evaluate the impact of lipopolysaccharide (LPS) on lactate accumulation in bovine mammary epithelial cells (BMECs) and to elucidate the underlying regulatory mechanisms. Further optimization of LPS treatment points was achieved by assessing the content of key glycolytic enzymes-hexokinases (HK), pyruvate kinase (PK) and pyruvate dehydrogenase (PDH)-as well as the expression levels of HK2, pyruvate dehydrogenase kinase4 (PDK4) and lactate dehydrogenase (LDHA).

View Article and Find Full Text PDF

Background: Testicular germ cell tumors are the most common solid malignancies in young men, with increasing incidence worldwide. Broadly classified into seminomas and non-seminomas, they exhibit distinct biological behaviors and responses to treatment. Although metabolic reprogramming is an acknowledged cancer hallmark, metabolic pathways in testicular germ cell tumors remain poorly understood.

View Article and Find Full Text PDF

Isolation method of brain microvessels from small frozen human brain tissue for blood-brain barrier protein expression analysis.

Fluids Barriers CNS

December 2024

Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.

Background: Protein expression analysis of isolated brain microvessels provides valuable insights into the function of the blood-brain barrier (BBB). However, isolation of brain microvessels from human brain tissue, particularly in small quantities, poses significant challenges. This study presents a method for isolating brain microvessels from a small amount of frozen human brain tissue, adapting techniques from an established mouse brain capillary isolation method.

View Article and Find Full Text PDF

Cancer adhesion to the mesothelium is critical for peritoneal metastasis, but how metastatic cells adapt to the biomechanical microenvironment remains unclear. Our study demonstrates that highly metastatic (HM), but not non-metastatic, ovarian cancer cells selectively activate the peritoneal mesothelium. HM cells exert a stronger adhesive force on mesothelial cells via P-cadherin, an adhesion molecule abundant in late-stage tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!