Several amino acid changes have been previously implicated in adaptation of avian influenza viruses to human hosts, among them the D701N change in the PB2 polymerase subunit that also is the main determinant of avian virus pathogenesis in animal models. However, previous studies using recombinant viruses did not provide conclusive information of the contribution of this PB2 residue to pathogenicity in human influenza virus strains. We identified this mutation in an A(H1N1)pdm09-like human influenza virus isolated from an infected patient with pneumonia and acute respiratory failure, admitted to the intensive care unit. An exhaustive search has revealed PB2-D701 as a highly conserved position in all available H1N1 human virus sequences in NCBI database, showing a very low prevalence of PB2-D701N change. Presence of PB2-701N amino acid correlates with severe or fatal outcome in those scarce cases with known disease outcome of the infection. In these patients, the residue PB2-701N may contribute to pathogenicity as it was previously reported in humans infected with avian viruses. This study helps to clarify a debate that has arisen regarding the role of PB2-D701N in human influenza virus pathogenicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5376584PMC
http://dx.doi.org/10.3389/fmicb.2017.00575DOI Listing

Publication Analysis

Top Keywords

human influenza
16
influenza virus
12
pb2-d701n mutation
8
pathogenicity human
8
amino acid
8
influenza
6
human
6
virus
5
identification rare
4
pb2-d701n
4

Similar Publications

To evaluate the performance of three rapid influenza diagnostic tests (RIDTs) for detecting influenza A and B viruses compared to RT-PCR. A total of 291 subjects with acute respiratory infections were enrolled. Respiratory specimens were collected and tested for influenza A and B viruses using three RIDTs.

View Article and Find Full Text PDF

Subacute thyroiditis - Is it really linked to viral infection? Retrospective hospital patient registry study.

J Clin Endocrinol Metab

January 2025

Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.

Objective: Subacute thyroiditis (SAT) is a painful inflammatory disorder of the thyroid gland, which - after a phase of thyrotoxicosis - leads to transient, or less frequently permanent hypothyroidism. Apart from a strong association with specific HLA alleles, the causes are uncertain. Viral disease has been hypothesised as a trigger, with Enteroviruses, namely Echoviruses and Coxsackieviruses, showing a seasonal distribution that coincides with the incidence of SAT.

View Article and Find Full Text PDF

TRIF-TAK1 signaling suppresses caspase-8/3-mediated GSDMD/E activation and pyroptosis in influenza A virus-infected airway epithelial cells.

iScience

January 2025

College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, P.R. China.

Pyroptosis plays an important role in attracting innate immune cells to eliminate infected niches. Our study focuses on how influenza A virus (IAV) infection triggers pyroptosis in respiratory epithelial cells. Here, we report that IAV infection induces pyroptosis in a human and murine airway epithelial cell line.

View Article and Find Full Text PDF

Objective: Social media has become an important tool in monitoring infectious disease outbreaks such as coronavirus disease 2019 and highly pathogenic avian influenza (HPAI). Influenced by the recent announcement of a possible human death from H5N2 avian influenza, we analyzed tweets collected from X (formerly Twitter) to describe the messaging regarding the HPAI outbreak, including mis- and dis-information, concerns, and health education.

Methods: We collected tweets involving keywords relating to HPAI for 5 days (June 04 to June 08, 2024).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!