Functional Information Stored in the Conserved Structural RNA Domains of Flavivirus Genomes.

Front Microbiol

Department of Molecular Biology, Instituto de Parasitología y Biomedicina "López-Neyra," Consejo Superior de Investigaciones Científicas (IPBLN-CSIC)Granada, Spain.

Published: April 2017

The genus comprises a large number of small, positive-sense single-stranded, RNA viruses able to replicate in the cytoplasm of certain arthropod and/or vertebrate host cells. The genus, which has some 70 member species, includes a number of emerging and re-emerging pathogens responsible for outbreaks of human disease around the world, such as the West Nile, dengue, Zika, yellow fever, Japanese encephalitis, St. Louis encephalitis, and tick-borne encephalitis viruses. Like other RNA viruses, flaviviruses have a compact RNA genome that efficiently stores all the information required for the completion of the infectious cycle. The efficiency of this storage system is attributable to supracoding elements, i.e., discrete, structural units with essential functions. This information storage system overlaps and complements the protein coding sequence and is highly conserved across the genus. It therefore offers interesting potential targets for novel therapeutic strategies. This review summarizes our knowledge of the features of flavivirus genome functional RNA domains. It also provides a brief overview of the main achievements reported in the design of antiviral nucleic acid-based drugs targeting functional genomic RNA elements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5376627PMC
http://dx.doi.org/10.3389/fmicb.2017.00546DOI Listing

Publication Analysis

Top Keywords

rna domains
8
rna viruses
8
storage system
8
rna
6
functional stored
4
stored conserved
4
conserved structural
4
structural rna
4
domains flavivirus
4
flavivirus genomes
4

Similar Publications

Structural insights into nucleocapsid protein variability: Implications for PJ34 efficacy against SARS-CoV-2.

Virology

January 2025

Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan. Electronic address:

Human coronaviruses (HCoVs) include common cold viruses such as HCoV-229E, OC43, NL63 and HKU1 as well as MERS-CoV and SARS-CoV, which cause severe respiratory disease. Recently, SARS-CoV-2 caused a COVID-19 pandemic. The nucleocapsid (N) protein of coronaviruses, which is essential for RNA binding and homodimerization, has a highly conserved structure across viruses.

View Article and Find Full Text PDF

Argonaute 2 regulates nuclear DNA damage, repair, and phenotypes in Arabidopsis under genotoxic stress.

Plant Physiol Biochem

January 2025

Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeonbuk-do, 56212, Republic of Korea.

Argonaute (AGO) proteins are involved in gene expression and genome integrity during biotic and abiotic stress responses. AGO2 mediates double-strand break (DSB) repair in DNA damage response (DDR) induced by genotoxic stress. However, beyond DSB repair, the involvement of AGO proteins in DDR remains unknown.

View Article and Find Full Text PDF

Eukaryotic Initiation Factor 4 (eIF4) is a group of factors that activates mRNA for translation and recruit 43S preinitiation complex (PIC) to the mRNA 5' end, forming the 48S PIC. The eIF4 factors include mRNA 5' cap-binding protein eIF4E, ATP-dependent RNA helicase eIF4A, and scaffold protein eIF4G, which anchors eIF4A and eIF4E. Another eIF4 factor, eIF4B, stimulates the RNA helicase activity of eIF4A and facilitates mRNA recruitment.

View Article and Find Full Text PDF

Metagenomes present a source for novel enzymes, but under 1% of environmental microbes are cultivatable. Because of its useful properties, Escherichia coli has been used as a host organism in functional genomic screens. However, due to differing expression machineries in the expression host compared to the source organism of the DNA sequences, screening outcomes can be biased.

View Article and Find Full Text PDF

Aging leads to cognitive decline and increased risk of neurodegenerative diseases. While molecular changes in central nervous system (CNS) cells contribute to this decline, the mechanisms are not fully understood. Long non-coding RNAs (lncRNAs) are key regulators of cellular functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!