This study proposes a simple method of fabricating flexible electronic devices using a metal template for passive alignment between chip components and an interconnect layer, which enabled efficient alignment with high accuracy. An electrocardiogram (ECG) sensor was fabricated using 20 µm thick polyimide (PI) film as a flexible substrate to demonstrate the feasibility of the proposed method. The interconnect layer was fabricated by a two-step photolithography process and evaporation. After applying solder paste, the metal template was placed on top of the interconnect layer. The metal template had rectangular holes at the same position as the chip components on the interconnect layer. Rectangular hole sizes were designed to account for alignment tolerance of the chips. Passive alignment was performed by simply inserting the components in the holes of the template, which resulted in accurate alignment with positional tolerance of less than 10 µm based on the structural design, suggesting that our method can efficiently perform chip mounting with precision. Furthermore, a fabricated flexible ECG sensor was easily attachable to the curved skin surface and able to measure ECG signals from a human subject. These results suggest that the proposed method can be used to fabricate epidermal sensors, which are mounted on the skin to measure various physiological signals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5426539 | PMC |
http://dx.doi.org/10.3390/s17040889 | DOI Listing |
Sci Rep
December 2024
Department of Computer Sciences and Industries, Universidad Católica del Maule, Talca, Chile.
Antimicrobial resistance (AMR) poses a significant global health challenge, necessitating advanced predictive models to support clinical decision-making. In this study, we explore multi-label classification as a novel approach to predict antibiotic resistance across four clinically relevant bacteria: E. coli, S.
View Article and Find Full Text PDFInt J Pharm
December 2024
Université de Lorraine, CITHEFOR, F-54000 Nancy, France. Electronic address:
As the main protein forming the vascular extracellular matrix, collagen has a weak antigenicity, making it an attractive candidate for coatings of vascular grafts. In order to bring antithrombotic properties to collagen for obtaining suitable blood compatibility of surfaces and further bioactive molecule carrying capacity, heparinization appears as a method of choice. Thus, in this article, pH-driven self-assembly was used to form collagen-based hydrogels with physical incorporation of heparins, especially low molecular weight heparin or unfractionated heparin at 1 IU/mL and 6 IU/mL.
View Article and Find Full Text PDFSci Rep
December 2024
Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark.
Highly porous, self-supported 3D interconnected network-based nanomaterials hold immense promise in revolutionizing the field of catalysis. These materials combine two critical features; a large accessible surface and an overall active surface that leads to substantial catalytic effects. In this study, we developed a novel class of 3D composite material composed of zinc oxide tetrapods (ZOT) and polyethylene glycol (PEG) polymer, specifically designed for photocatalysis.
View Article and Find Full Text PDFACS Nano
December 2024
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China.
Perovskite/organic tandem solar cells (PO-TSCs) have recently attracted increasing attention due to their high efficiency and excellent stability. The interconnecting layer (ICL) is of great importance for the performance of PO-TSCs. The charge transport layer (CTL) and the charge recombination layer (CRL) that form the ICL should be carefully designed to enhance charge carrier extraction and promote charge carrier recombination balance from the two subcells.
View Article and Find Full Text PDFJ Adv Nurs
December 2024
College of Nursing, University of Arizona, Tucson, Arizona, USA.
Aims: We offer a literature-driven, empirically informed, and highly warranted recommendation for a multilevel approach tailored to nurse practitioners. This approach aimed to drive change at the individual level (nurse practitioner), dyadic level (nurse-patient therapeutic relationship), and systems level (organisational culture, education, and policy) to strengthen nurse practitioners' capacity to deliver optimal opioid use disorder care.
Background: The opioid overdose epidemic is a global public health crisis, with the United States facing the most severe impact.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!