In this work, fibre Bragg gratings (FBGs) were inscribed in two different undoped poly- (methyl methacrylate) (PMMA) polymer optical fibres (POFs) using different types of UV lasers and their inscription times, temperature and strain sensitivities are investigated. The POF Bragg gratings (POFBGs) were inscribed using two UV lasers: a continuous UV HeCd @325 nm laser and a pulsed UV KrF @248 nm laser. Two PMMA POFs are used in which the primary and secondary preforms (during the two-step drawing process) have a different thermal treatment. The PMMA POFs drawn in which the primary or secondary preform is not specifically pre-treated need longer inscription time than the fibres drawn where both preforms have been pre-annealed at 80 °C for 2 weeks. Using both UV lasers, for the latter fibre much less inscription time is needed compared to another homemade POF. The properties of a POF fabricated with both preforms thermally well annealed are different from those in which just one preform step process is thermally treated, with the first POFs being much less sensitive to thermal treatment. The influence of annealing on the strain and temperature sensitivities of the fibres prior to FBG inscription is also discussed, where it is observed that the fibre produced from a two-step drawing process with well-defined pre-annealing of both preforms did not produce any significant difference in sensitivity. The results indicate the impact of preform thermal pre-treatment before the PMMA POFs drawing, which can be an essential characteristic in the view of developing POF sensors technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5426541PMC
http://dx.doi.org/10.3390/s17040891DOI Listing

Publication Analysis

Top Keywords

pmma pofs
12
pmma polymer
8
polymer optical
8
optical fibres
8
thermal pre-treatment
8
bragg gratings
8
primary secondary
8
two-step drawing
8
drawing process
8
thermal treatment
8

Similar Publications

In this work, Fe2O3 was investigated as a doping agent for poly(methyl methacrylate) (PMMA) in order to enhance the plasmonic effect in sensors based on D-shaped plastic optical fibers (POFs). The doping procedure consists of immerging a premanufactured POF sensor chip in an iron (III) solution, avoiding repolymerization and its related disadvantages. After treatment, a sputtering process was used to deposit a gold nanofilm on the doped PMMA in order to obtain the surface plasmon resonance (SPR).

View Article and Find Full Text PDF

We report fiber Bragg grating manufacturing in poly(methyl methacrylate) (PMMA)-based polymer optical fibers (POFs) with a diphenyl disulfide (DPDS)-doped core by means of a 266 nm pulsed laser and the phase mask technique. Gratings were inscribed with different pulse energies ranging from 2.2 mJ to 2.

View Article and Find Full Text PDF

This paper presents an analysis of the mechanical properties of different polymer optical fibers (POFs) at ultraviolet (UV) radiation conditions. Cyclic transparent optical polymer (CYTOP) and polymethyl methacrylate (PMMA) optical fibers are used in these analyses. In this case, the fiber samples are irradiated at the same wavelength, pulse time and energy conditions for different times, namely, 10 s, 1 min, 2 min and 3 min.

View Article and Find Full Text PDF

More recently, various techniques have been implemented for the sensors manufacturing purpose, such as fiber Bragg gratings fibers (FBG) that allows variable core refractive index suitable for a large scale of measurements types, fiber optic evanescent waves (FOEW) for water parameters measurement, microstructured and crystal photonic optical fibers, polymers optical fiber (POFs), and so on. In this perspective, the objective of this work is to study the reliability and the origin of the resistance of each fiber-matrix interface of the composite materials PMMA/PEEK, Topas/PEEK, and Topas-Zeonex/PEEK. The genetic simulation is based on the probabilistic approach of Weibull to calculate the damage at the interface by crossing the two damages of the matrix and the fiber respectively.

View Article and Find Full Text PDF

This review discusses recent achievements on grating fabrications in polymer optical fibers doped with photosensitive materials. First, different photosensitive dopants in polymer optical fibers (POFs) are summarized, and their refractive index change mechanisms are discussed. Then, several different doping methods to fabricate the photosensitive POFs are presented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!