Residual host cell proteins (HCPs) are process-related impurities present in biotherapeutics that can pose safety health risks to patients. An adequate control of HCP levels in the final product, and demonstration of HCP clearance throughout a product manufacturing process is critical for all biotherapeutic products. Developing effective downstream purification processes can be challenging as HCPs and product proteins may possess an affinity for each other or have similar physicochemical properties, resulting in co-purification. In the current study, we identified the presence of CHO-catalase subunit protein as an impurity present in purified P1 protein. This previously unreported HCP impurity, was detected in P1 protein generated in Chinese hamster ovary (CHO) cells. Purified drug substance samples contained elevated CHO HCP levels when measured using a commercial anti-CHO HCP Enzyme-Linked Immunosorbent Assay (ELISA) kit. This finding, prompted further characterization of the HCP profile using 1D and 2D gels/ western blots using an anti-human IgG antibody as well as a commercial anti-CHO HCP antibody (Cygnus 813) for the detection of host cell proteins. The CHO-catalase protein has been characterized using a combination approach of one-dimensional (1D) and two-dimensional (2D) gels and western blotting techniques, and the identity confirmed using liquid chromatography-mass spectrometry (LC-MS/MS) analysis. Western blot analyses using the anti-CHO HCP antibody detected a potential HCP band at ∼60 kDa and a pI of ∼8 in the purified P1 sample. The 60 kDa HCP band was excised from 1D SDS-PAGE gels and LC-MS/MS analysis identified it to be CHO-catalase subunit. The identity of catalase monomer was further confirmed by western blot analysis using a specific anti-catalase antibody.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpba.2017.03.065 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!