A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Potent osteogenic activity of a novel imidazobenzimidazole derivative, IBIP. | LitMetric

Potent osteogenic activity of a novel imidazobenzimidazole derivative, IBIP.

Biochem Biophys Res Commun

College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea. Electronic address:

Published: May 2017

Bone mass is controlled by a balance between bone resorption and formation by osteoclasts and osteoblasts, respectively. An imbalance between osteoblasts and osteoclasts increases the risk of osteoporosis and fractures. Although inhibition of osteoclasts is beneficial for preventing and treating osteoporosis, enhanced bone formation through activation of osteoblast differentiation can be a more promising therapeutic approach. In this study, we attempted to isolate small molecules that promote osteoblast differentiation and found that IBIP (3-(2,3-dimethoxyphenyl)-1-[9-methyl-2-phenyl-9H-imidazo[1,2-a]benzimidazol-3-yl]-2-propen-1-one) was a potent activator of osteoblast differentiation. Upon bone morphogenetic protein-2 (BMP2) stimulation, IBIP promoted osteoblast differentiation and increased the expression of osteoblast-specific gene markers, such as osterix and alkaline phosphatase, in a dose-dependent manner. The phosphorylation of SMADs and extracellular signal-regulated kinase (ERK) increased after IBIP treatment. While enhanced SMAD phosphorylation by IBIP was abolished by a BMP inhibitor, IBIP-induced ERK phosphorylation was sustained in the presence of this inhibitor, but was decreased by an ERK kinase inhibitor. Suppression of IBIP-induced SMAD and ERK phosphorylation diminished osteoblast differentiation. Most importantly, IBIP enhanced bone formation and calcification in a BMP2-independent manner in vitro and advanced the skeletal development of zebrafish larvae in vivo. Collectively, IBIP may have beneficial effects on bone loss through potentiation of bone formation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2017.04.075DOI Listing

Publication Analysis

Top Keywords

osteoblast differentiation
20
bone formation
12
enhanced bone
8
erk phosphorylation
8
ibip
7
bone
7
osteoblast
5
differentiation
5
potent osteogenic
4
osteogenic activity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!