Aminoglycoside nucleotidyltransferase 2''-I follows a Theorell-Chance kinetic mechanism in which turnover is controlled by the rate-limiting release of the final product (Q), a nucleotidylated aminoglycoside [Gates, C. A., & Northrop, D. B. (1988) Biochemistry (second of three papers in this issue)]. The effects of viscosity on the kinetic constants of netilmicin, gentamicin C1, and sisomicin aminoglycoside substrates are as follows: no change in the substrate inhibition constants of all three antibiotics, a small but significant and highly unusual increase in Vmax/Km for netilmicin but large, normal decreases for gentamicin C1 and sisomicin, and marked decreases in the maximal velocities for all three. The lack of effect on substrate inhibition provides essential control experiments, signifying that glycerol does not interfere with binding of aminoglycosides to EQ and that the steady-state distribution of EQ does not increase as the release of Q is slowed by a viscosogen. The decrease in the Vmax/Km of better substrates indicates dominance by a diffusion-controlled component in the catalytic segment, attributed to the release of pyrophosphate. The presence of an increase in the Vmax/Km of the poor substrate, however, is inexplicable in terms of either single or multiple diffusion-controlled steps. Instead, it is here attributed to an equilibrium between conformers of the enzyme-nucleotide complex in which glycerol favors the conformation necessary for binding of aminoglycosides. The decrease in Vmax is consistent with the diffusion-controlled release of the final product determining enzymatic turnover.(ABSTRACT TRUNCATED AT 250 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi00410a047 | DOI Listing |
Front Microbiol
December 2024
Department of Laboratory Sciences, The People's Hospital of Yuhuan, Yuhuan, China.
Background: The mechanisms underlying the resistance of the genus to aminoglycosides are complex, which poses a challenge for the efficient treatment of infectious diseases caused by these pathogens. To help clinicians treat infections more effectively, a more comprehensive understanding of antibiotic resistance mechanisms is urgently needed.
Methods: Plates were streaked to isolate bacteria from the intestinal contents of fish.
Nucleic Acids Res
January 2025
Peter the Great St. Petersburg Polytechnic University, Research Center of Nanobiotechnologies, Polytechnicheskaya, 29 B, Saint Petersburg, 195251,Russia.
Langmuir
December 2024
College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
Although DNAzyme is a promising gene therapy agent, low cellular uptake efficiency, poor biological stability, and the unsatisfactory effect of monotherapy limit its development. Herein, a multifunctional DNA nanoassembly (RCA product-aptamer-DNAzyme, RAD) was constructed for cancer cell detection and targeted delivery of doxorubicin (DOX) and DNAzyme. Briefly, the rolling circle amplification (RCA) product was employed as a scaffold, and each repeated sequence was designed to combine with three single-stranded DNA (ssDNA), which carried the aptamer AS1411 sequence, fluorescent group, and DNAzyme sequence, respectively.
View Article and Find Full Text PDFMol Biol Rep
October 2024
Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam.
Background: Drug-resistant tuberculosis not only diminishes treatment efficacy but also heightens the risk of transmission and mortality. Investigating Mycobacterium tuberculosis resistance to first-line antituberculosis drugs is essential to tackle a major global health challenge.
Methods And Results: Using Sanger sequencing, this study investigates gene mutations associated with multidrug resistance in drug-resistant M.
Proteins
February 2025
Department of Chemistry, Grand Valley State University, Allendale, Michigan, USA.
Aminoglycoside antibiotics have played a critical role in the treatment of both Gram-negative and Gram-positive bacterial infections. However, antibiotic resistance has severely compromised the efficacy of aminoglycosides. A leading cause of aminoglycoside resistance is mediated by bacterial enzymes that inactivate these drugs via chemical modification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!