Cortactin (CTTN) is a substrate of the Src kinase Lyn that is known to play an actin cytoskeletal regulatory role involved in cell migration and cancer progression following its phosphorylation at Y421. We recently demonstrated that Cortactin is overexpressed in patients with chronic lymphocytic leukaemia (CLL). This work was aimed at defining the functional role of Cortactin in these patients. We found that Cortactin is variably expressed in CLL patients both in the peripheral blood and lymph nodes and that its expression correlates with the release of matrix metalloproteinase 9 (MMP-9) and the motility of neoplastic cells. Cortactin knockdown, by siRNA, induced a reduction in MMP-9 release as well as a decrease of migration capability of leukaemic B cells in vitro, also after chemotactic stimulus. Furthermore, Cortactin phosphorylation was lowered by the Src kinase-inhibitor PP2 with a consequent decrease of MMP-9 release in culture medium. An impaired migration, as compared to control experiments without Cortactin knockdown, was observed following CXCL12 triggering. Reduced Cortactin expression and phosphorylation were also detected both in vivo and in vitro after treatment with Ibrutinib, a Btk inhibitor. Our results highlight the role of Cortactin in CLL as a check-point molecule between the BCR and CXCR4 signalling pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/bjh.14642 | DOI Listing |
Curr Cancer Drug Targets
January 2025
Human Genetics Laboratory, Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, 37130-001, MG, Brazil.
Histone Deacetylase 6 (HDAC6) is an intriguing therapeutic target in cancer re-search, distinguished as the only HDAC family member predominantly located in the cyto-plasm. HDAC6 features two catalytic domains and a unique ubiquitin-binding domain, which sets it apart from other HDACs. Beyond its role in histone deacetylation, HDAC6 targets vari-ous nonhistone substrates, such as α-tubulin, cortactin, Heat Shock Protein 90 (HSP90), and Heat Shock Factor 1 (HSF1).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea.
Cortactin (CTTN) is an actin-binding protein regulating actin polymerization and stabilization, which are vital processes for maintaining skeletal muscle homeostasis. Despite the established function of CTTN in actin cytoskeletal dynamics, its role in the myogenic differentiation of progenitor cells remains largely unexplored. In this study, we investigated the role of CTTN in the myogenic differentiation of C2C12 myoblasts by analyzing its effects on actin cytoskeletal remodeling, myocardin-related transcription factor A (MRTFA) nuclear translocation, serum response factor (SRF) activation, expression of myogenic transcription factors, and myotube formation.
View Article and Find Full Text PDFAutophagy
December 2024
Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Alzheimer disease (AD), a prevalent neurodegenerative condition in the elderly, is marked by a deficit in macroautophagy/autophagy, leading to intracellular MAPT/tau accumulation. While ISG15 (ISG15 ubiquitin like modifier) has been identified as a regulator of selective autophagy in ataxia telangiectasia (A-T), its role in AD remains unexplored. Our study reveals elevated ISG15 levels in the brains of patients with sporadic AD and AD models and .
View Article and Find Full Text PDFJ Neurosci
November 2024
Institute of Neuroscience, CNR, Vedano al Lambro, Italy.
Front Immunol
November 2024
Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
C-terminal Src kinase (Csk) targets Src family kinases (SFKs) and thereby inactivates them. We have previously shown that Csk binds to phosphorylated tyrosine 685 of VE-cadherin, an adhesion molecule of major importance for the regulation of endothelial junctions. This tyrosine residue is an SFK target, and its mutation (VE-cadherin-Y685F) inhibits the induction of vascular permeability in various inflammation models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!