Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Species richness estimation is one of the most widely used analyses carried out by ecologists, and nonparametric estimators are probably the most used techniques to carry out such estimations. We tested the assumptions and results of nonparametric estimators and those of a logseries approach to species richness estimation for simulated tropical forests and five data sets from the field. We conclude that nonparametric estimators are not suitable to estimate species richness in tropical forests, where sampling intensity is usually low and richness is high, because the assumptions of the methods do not meet the sampling strategy used in most studies. The logseries, while also requiring substantial sampling, is much more effective in estimating species richness than commonly used nonparametric estimators, and its assumptions better match the way field data is being collected.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ecy.1813 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!