Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Propensity score methods are widely used in comparative effectiveness research using claims data. In this context, the inaccuracy of procedural or billing codes in claims data frequently misclassifies patients into treatment groups, that is, the treatment assignment ($T$) is often measured with error. In the context of a validation data where treatment assignment is accurate, we show that misclassification of treatment assignment can impact three distinct stages of a propensity score analysis: (i) propensity score estimation; (ii) propensity score implementation; and (iii) outcome analysis conducted conditional on the estimated propensity score and its implementation. We examine how the error in $T$ impacts each stage in the context of three common propensity score implementations: subclassification, matching, and inverse probability of treatment weighting (IPTW). Using validation data, we propose a two-step likelihood-based approach which fully adjusts for treatment misclassification bias under subclassification. This approach relies on two common measurement error-assumptions; non-differential measurement error and transportability of the measurement error model. We use simulation studies to assess the performance of the adjustment under subclassification, and also investigate the method's performance under matching or IPTW. We apply the methods to Medicare Part A hospital claims data to estimate the effect of resection versus biopsy on 1-year mortality among $10\,284$ Medicare beneficiaries diagnosed with brain tumors. The ICD9 billing codes from Medicare Part A inaccurately reflect surgical treatment, but SEER-Medicare validation data are available with more accurate information.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5862346 | PMC |
http://dx.doi.org/10.1093/biostatistics/kxx014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!