Time-dependent Kohn-Sham density functional theory has been used successfully to compute vertical excitation energies, especially for large molecular systems. However, the lack of double excitation character in the excited amplitudes produced by linear response in the adiabatic approximation holds it back from broader applications in photochemistry; for example, it shows (3N - 7)-dimensional conical intersection seams (where N is the number of atoms) between ground and excited states, although the correct dimensionality is 3N - 8. In this letter, we present a new, conceptually simple, easy-to-implement, and easy-to-use way to employ time-dependent Kohn-Sham density functional theory that has global accuracy comparable with the conventional single-functional version and that recovers the double cone topology of the potential energy surfaces at S/S conical intersection seams. The new method is called the dual-functional Tamm-Dancoff approximation (DF-TDA).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.7b00594 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!