Systematic Dissociation Pathway Searches Guided by Principal Component Modes.

J Chem Theory Comput

Department of Chemistry, University of California, Riverside, California 92521, United States.

Published: May 2017

We introduce a novel method, Pathway Search guided by Internal Motions (PSIM), that efficiently finds molecular dissociation pathways of a ligand-receptor system with guidance from principal component (PC) modes obtained from molecular dynamics (MD) simulations. Modeling ligand-receptor dissociation pathways can provide insights into molecular recognition and has practical applications, including understanding kinetic mechanisms and barriers to binding/unbinding as well as design of drugs with desired kinetic properties. PSIM uses PC modes in multilayer internal coordinates to identify natural molecular motions that guide the search for conformational switches and unbinding pathways. The new multilayer internal coordinates overcome problems with Cartesian and classical internal coordinates that fail to smoothly present dihedral rotation or generate nonphysical distortions. We used HIV-1 protease, which has large-scale flap motions, as an example protein to demonstrate use of the multilayer internal coordinates. We provide examples of algorithms and implementation of PSIM with alanine dipeptide and chemical host-guest systems, 2-naphthyl ethanol-β-cyclodextrin and tetramethylammonium-cryptophane complexes. Tetramethylammonium-cryptophane has slow binding/unbinding kinetics. Its residence time, the length to dissociate tetramethylammonium from the host, is ∼14 s from experiments, and PSIM revealed 4 dissociation pathways in approximately 150 CPU h. We also searched the releasing pathways for the product glyceraldehyde-3-phosphate from tryptophan synthase, and one complete dissociation pathway was constructed after running multiple search iterations in approximately 300 CPU h. With guidance by internal PC modes from MD simulations, the PSIM method has advantages over simulation-based methods to search for dissociation pathways of molecular systems with slow noncovalent kinetic behavior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5920795PMC
http://dx.doi.org/10.1021/acs.jctc.6b01204DOI Listing

Publication Analysis

Top Keywords

dissociation pathways
16
internal coordinates
16
multilayer internal
12
dissociation pathway
8
principal component
8
component modes
8
internal
6
pathways
6
psim
5
molecular
5

Similar Publications

Enhanced sampling of protein conformational changes via true reaction coordinates from energy relaxation.

Nat Commun

January 2025

Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill Department of Biomedical Engineering, The University of Illinois Chicago, 851 South Morgan Street, Chicago, IL, 60607, USA.

The bottleneck in enhanced sampling lies in finding collective variables that effectively accelerate protein conformational changes; true reaction coordinates that accurately predict the committor are the well-recognized optimal choice. However, identifying them requires unbiased natural reactive trajectories, which, paradoxically, require effective enhanced sampling. Using the generalized work functional method, we uncover that true reaction coordinates control both conformational changes and energy relaxation, enabling us to compute them from energy relaxation simulations.

View Article and Find Full Text PDF

Activation of N through transition-metal complexes has emerged as a powerful strategy for N fixation under mild conditions. Dissociative route and associative route are considered as two major routes for N transformation on transition-metal complexes. Homolysis of N between two metal fragments is the crucial step of the dissociative route and has been proven to be an efficient approach to the terminal metal nitride, which is the key intermediate for both routes.

View Article and Find Full Text PDF

Recent photolysis experiments with formic acid suggest that the roaming mechanism is a significant CO-forming pathway at a photolysis energy of 230 nm. While previous computational studies have identified multiple dissociation pathways for CO-forming channels, the dynamic features of these pathways remain poorly understood. This study investigates the dissociation dynamics of the CO + HO and CO + H channels in the ground state (S) of formic acid using direct dynamics simulation and the generalized multi-center impulsive model (GMCIM) at 230 nm.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) are a promising drug modality substantially expanding in both the discovery space and clinical development. Assessing the biotransformation of ADCs and is important in understanding their stability and pharmacokinetic properties. We previously reported biotransformation pathways for the anti-B7H4 topoisomerase I inhibitor ADC, AZD8205, puxitatug samrotecan, that underpin its structural stability using an intact protein liquid chromatography-high resolution mass spectrometry (LC-HRMS) approach.

View Article and Find Full Text PDF

Lithium-sulfur (Li-S) batteries has been regarded as one of the most promising next-generation energy storage systems due to their high theoretical energy density. However, the practical application of Li-S batteries is still hindered by the unstable cathode-electrolyte interphase and the early passivation of charge product (Li2S), leading to poor cycling stability and low S utilization. Herein, we propose an electrolyte engineering strategy using highly solvating hexamethylphosphoramide (HMPA) as a co-solvent to elucidate the dissociation-precipitation chemistry of lithium polysulfides (LiPSs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!