We have calculated the excess free energy of mixing of 1053 binary mixtures with the OPLS-AA force field using two different methods: thermodynamic integration (TI) of molecular dynamics simulations and the Pair Configuration to Molecular Activity Coefficient (PAC-MAC) method. PAC-MAC is a force field based quasi-chemical method for predicting miscibility properties of various binary mixtures. The TI calculations yield a root mean squared error (RMSE) compared to experimental data of 0.132 kT (0.37 kJ/mol). PAC-MAC shows a RMSE of 0.151 kT with a calculation speed being potentially 1.0 × 10 times greater than TI. OPLS-AA force field parameters are optimized using PAC-MAC based on vapor-liquid equilibrium data, instead of enthalpies of vaporization or densities. The RMSE of PAC-MAC is reduced to 0.099 kT by optimizing 50 force field parameters. The resulting OPLS-PM force field has a comparable accuracy as the OPLS-AA force field in the calculation of mixing free energies using TI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5425945 | PMC |
http://dx.doi.org/10.1021/acs.jctc.6b01106 | DOI Listing |
Langmuir
January 2025
Department of Physical Chemistry II, University of Bayreuth, Universitaetsstrasse 30, Bayreuth 95447, Germany.
Direct force measurements by atomic force microscopy (AFM) have become an indispensable analytical tool in the last decades. Force measurements have been widely used for adhesion measurements, often in combination with the colloidal probe technique. For the latter technique, a colloidal particle is attached to the end of an AFM cantilever, proving great flexibility in terms of colloid/surface interaction to be studied.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.
The polycrystalline nature of perovskites, stemming from their facile solution-based fabrication, leads to a high density of grain boundaries (GBs) and point defects. However, the impact of GBs on perovskite performance remains uncertain, with contradictory statements found in the literature. We developed a machine learning force field, sampled GB structures on a nanosecond time scale, and performed nonadiabatic (NA) molecular dynamics simulations of charge carrier trapping and recombination in stoichiometric and doped GBs.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Urology, Affiliated Hospital of Youjiang Medical University for Nationalities and Key Laboratory of Molecular Pathology in Tumors of Baise, Baise 533000, China. Electronic address:
The primary objective of this study was to conduct a comprehensive analysis of the mechanism by which TCF7 recombinant protein operates, as well as to examine its expression patterns within bladder cancer cells. This research seeks to establish a new theoretical framework and provide experimental data that could advance the field of molecular targeted therapy for bladder cancer. Erlotinib, a well-known targeted therapy drug, was administered to the bladder cancer cells, and we evaluated its antitumor effects through various assays such as cell proliferation, apoptosis, and cell cycle analysis.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
January 2025
Binghamton Center of Complex Systems, Binghamton University, State University of New York, Binghamton, NY 13902, USA.
Artificial swarm systems have been extensively studied and used in computer science, robotics, engineering and other technological fields, primarily as a platform for implementing robust distributed systems to achieve pre-defined objectives. However, such swarm systems, especially heterogeneous ones, can also be utilized as an ideal platform for creating open-ended evolutionary dynamics that do not converge toward pre-defined goals but keep exploring diverse possibilities and generating novel outputs indefinitely. In this article, we review Swarm Chemistry and its variants as concrete sample cases to illustrate beneficial characteristics of heterogeneous swarm systems, including the cardinality leap of design spaces, multi-scale structures/behaviours and their diversity, and robust self-organization, self-repair and ecological interactions of emergent patterns, all of which serve as the driving forces for open-ended evolutionary processes.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Research Institute of Aero-Engine, Beihang University, Beijing 100191, China. Electronic address:
Hypothesis: Complex emulsions usually consist of aqueous phases, like oil-in-water-in-oil (o/w/o) and water-in-oil-in-water (w/o/w), serving foundational roles in colloid science. Oil-in-oil-oil (o/o/o) emulsions offer new avenues for non-aqueous reagents but face challenges in balancing the forces between multiple organic phases.
Experiments: In this work, we generate o/o/o emulsions by integrating an AC electric field with a double cross-junction microchannel.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!