Silver Film Surface Modification by Ion Bombardment Decreases Surface Plasmon Resonance Absorption.

ACS Appl Mater Interfaces

Nanostructured Energy Conversion Technology and Research (NECTAR) and ‡University of California Observatories, University of California Santa Cruz, Santa Cruz, California 95064, United States.

Published: May 2017

Silver thin films covered with dielectric films serving as protective coatings are desired for telescope mirrors, but durable coatings have proved elusive. As part of an effort to develop long-lived protected-silver mirrors, silver thin films were deposited by electron beam evaporation using a physical vapor deposition system at the University of California Observatories Astronomical Coatings Lab. The silver films were later covered with a stack of dielectric films utilizing silicon nitride and titanium dioxide deposited by ion-assisted electron beam evaporation to fabricate protected mirrors. In-situ argon ion bombardment was introduced after silver deposition and prior to the deposition of dielectric films to assess its effects on the performance of the mirrors. We found that ion bombardment of the silver influenced surface morphology and reflectivity, and these effects correlated with time between silver deposition and ion bombardment. The overall reflectivity at wavelengths in the range of 350-800 nm was found to improve due to ion bombardment, which was qualitatively interpreted as a result of decreased surface plasmon resonance coupling. We suggest that the observed decrease in coupling is caused by silver grain boundary pinning due to ion bombardment suppressing silver surface diffusion, forming smoother silver-dielectric interfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b01603DOI Listing

Publication Analysis

Top Keywords

ion bombardment
24
dielectric films
12
silver
9
surface plasmon
8
plasmon resonance
8
silver thin
8
thin films
8
films covered
8
electron beam
8
beam evaporation
8

Similar Publications

Effect of Bias Voltage on the Microstructure and Photoelectric Properties of W-Doped ZnO Films.

Nanomaterials (Basel)

December 2024

Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516007, China.

W-doped ZnO (WZO) films were deposited on glass substrates by using RF magnetron sputtering at different substrate bias voltages, and the relationships between microstructure and optical and electrical properties were investigated. The results revealed that the deposition rate of WZO films first decreased from 8.8 to 7.

View Article and Find Full Text PDF

(AlCrMoNiTi)N high-entropy alloy nitride (HEAN) films were synthesized at various bias voltages using the co-filter cathodic vacuum arc (co-FCVA) deposition technique. This study systematically investigates the effect of bias voltage on the microstructure and performance of HEAN films. The results indicate that an increase in bias voltage enhances the energy of ions while concomitantly reducing the deposition rate.

View Article and Find Full Text PDF

Infrared spectroscopy of α-pinene ices irradiated by energetic ions at temperatures relevant to astronomical environments.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente 225, Rio de Janeiro 22451-900, RJ, Brazil.

The effects of cosmic-ray bombardment of chiral molecules in the interstellar medium are simulated in the laboratory by performing radiolysis experiments of pure α-pinene ices at four different temperatures. The identification and significance of α-pinene have not been fully understood because of the insufficient amount of spectral information of these compounds at low temperatures. A comparison of the temperature dependence of the mid-infrared spectra of pure α-pinene ices before and after irradiation its irradiation by 61.

View Article and Find Full Text PDF

The He irradiation-induced mechanical and microstructural evolutions were studied in NbMoTaW (at.%) and NbMoTaWRe (at.%) refractory high-entropy alloys (RHEAs) films, respectively.

View Article and Find Full Text PDF

High energy density physics driven by intense heavy ion beams will be an important new project for the high intensity heavy-ion accelerator facility and the Dongjiang Laboratory. This paper presents an experimental investigation of ion beam-induced luminescence in a strong magnetic field background at HIRFL. The experiment utilizes a 430 MeV/u Kr ion beam with a pulse duration of 300 ns to bombard an AlO (Cr) solid target.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!