Importance: Long-term exposure to solar radiation produces deleterious photoaging of the skin. It is not known if diet can influence skin photoaging.
Objectives: To study the influence of a calorie-restricted diet and an obesity diet in mice exposed to long-term UV-B irradiation to assess if there is an association between diet and histopathological response to UV-B irradiation.
Design, Setting, And Participants: In this animal model study in an academic setting, the dorsal skin of SKH1 hairless mice receiving normal, calorie-restricted, and obesity diets was exposed to UV-B irradiation 3 times a week for 10 weeks and were compared with corresponding controls. The mice were placed in the following groups, with 8 animals in each group: (1) intact control (C) with regular diet and no UV-B exposure, (2) intact control with UV-B exposure (CR), (3) calorie-restricted diet (CrC), (4) calorie-restricted diet with UV-B exposure (CrR), (5) obesity diet (OC), and (6) obesity diet with UV-B exposure (OR). The experiment was conducted during October through December 2013. Tissue processing and histological analysis were completed in 2016.
Main Outcomes And Measures: Histomorphometric analysis was performed on paraffin-embedded skin sections stained by histological and immunohistochemical methods for estimation of epidermal thickness, epidermal proliferating cell nuclear antigen index, collagen I, elastic fibers, fibroblasts, mast cells, dermal cellularity, and adipose layer ratio. Changes in wrinkles were noted.
Results: Hairless female mice (age range, 6-8 weeks) were obtained. With a normal diet, changes from UV-B irradiation occurred in epidermal thickness, epidermal proliferating cell nuclear antigen index, collagen I, elastic fibers, fibroblasts, and mast cells, which were modestly influenced by an obesity diet. Calorie restriction influenced the skin in nonirradiated control animals, with higher values for most variables. After UV-B exposure in animals with calorie restriction, epidermal thickness was increased, but other variables were unaffected. Animals receiving the calorie-restricted diet lost weight when exposed to long-term UV-B irradiation. Wrinkles were reduced in the calorie-restricted control group and in UV-B-exposed animals who received the obesity diet.
Conclusions And Relevance: Dietary alterations seem to modify histopathological responses to UV-B exposure in the skin of hairless mice.
Level Of Evidence: NA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5815118 | PMC |
http://dx.doi.org/10.1001/jamafacial.2017.0060 | DOI Listing |
Arch Dermatol Res
January 2025
Department of Dermatology, Drexel University College of Medicine, 860 1St Avenue, Suite 8B, Philadelphia, PA, 19406, USA.
UV-A exposure is a major risk factor for melanoma, nonmelanoma skin cancer, photoaging, and exacerbation of photodermatoses. Since people spend considerable time in cars daily, inadequate UV-A attenuation by car windows can significantly contribute to the onset or exacerbation of these skin diseases. Given recent market trends in the automobile industry and known impact of car windows on cumulative lifelong UV damage to the skin, there is a need to comparatively evaluate UV transmission across windows in electric vehicles (EV), hybrid vehicles (HV), and gas vehicles (GV) as well as variability based on year of manufacture and mileage to inform car manufacturers and consumers of the potential for UV exposure to the skin based on vehicle.
View Article and Find Full Text PDFHeliyon
January 2025
Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Makkah, 23955, Saudi Arabia.
Antarctica's harsh environmental conditions, characterized by high levels of ultraviolet (UV) radiation, pose challenges for microorganisms. To survive in these extreme cold regions with heightened UV exposure, microorganisms employ various adaptive strategies, including photoprotective carotenoid synthesis. Carotenoids are garnering attention in the skin health industry because of their UV photoprotection potential, given the direct relationship between UV exposure and skin burns, and cancer.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China.
The growing depletion of the ozone layer has led to increased ultraviolet B (UV-B) radiation, prompting plants like the alpine Pall. () to adapt to these harsh conditions. This study explored how abscisic acid (ABA) signaling influences 's metabolic responses under UV-B stress.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh, India.
Under changing climatic conditions, plant exposure to high-intensity UV-B can be a potential threat to plant health and all plant-derived human requirements, including food. It's crucial to understand how plants respond to high UV-B radiation so that proper measures can be taken to enhance tolerance towards high UV-B stress. We found that BBX22, a B-box protein-coding gene, is strongly induced within one hour of exposure to high-intensity UV-B.
View Article and Find Full Text PDFFood Res Int
January 2025
Division Quality and Sensory of Plant Products, Georg-August-Universität Göttingen, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany. Electronic address:
Phenolic compounds are known for their health-promoting effects on humans. Pak choi (Brassica rapa ssp. chinensis) and Swiss chard (Beta vulgaris subsp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!