Oxytocin may influence various human behaviors and the connectivity across subcortical and cortical networks. Previous oxytocin studies are male biased and often constrained by task-based inferences. Here, we investigate the impact of oxytocin on resting-state connectivity between subcortical and cortical networks in women. We collected resting-state functional magnetic resonance imaging (fMRI) data on 26 typically developing women 40 min following intranasal oxytocin administration using a double-blind placebo-controlled crossover design. Independent components analysis (ICA) was applied to examine connectivity between networks. An independent analysis of oxytocin receptor (OXTR) gene expression in human subcortical and cortical areas was carried out to determine plausibility of direct oxytocin effects on OXTR. In women, OXTR was highly expressed in striatal and other subcortical regions, but showed modest expression in cortical areas. Oxytocin increased connectivity between corticostriatal circuitry typically involved in reward, emotion, social communication, language and pain processing. This effect was 1.39 standard deviations above the null effect of no difference between oxytocin and placebo. This oxytocin-related effect on corticostriatal connectivity covaried with autistic traits, such that oxytocin-related increase in connectivity was stronger in individuals with higher autistic traits. In sum, oxytocin strengthened corticostriatal connectivity in women, particularly with cortical networks that are involved in social-communicative, motivational and affective processes. This effect may be important for future work on neurological and psychiatric conditions (for example, autism), particularly through highlighting how oxytocin may operate differently for subsets of individuals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5416709PMC
http://dx.doi.org/10.1038/tp.2017.72DOI Listing

Publication Analysis

Top Keywords

subcortical cortical
12
cortical networks
12
oxytocin
10
intranasal oxytocin
8
connectivity
8
connectivity women
8
connectivity subcortical
8
cortical areas
8
corticostriatal connectivity
8
autistic traits
8

Similar Publications

Introduction: The link between overload brain iron and transcriptional/cellular signatures in Alzheimer's disease (AD) remains inconclusive.

Methods: Iron deposition in 41 cortical and subcortical regions of 30 AD patients and 26 healthy controls (HCs) was measured using quantitative susceptibility mapping (QSM). The expression of 15,633 genes was estimated in the same regions using transcriptomic data from the Allen Human Brain Atlas (AHBA).

View Article and Find Full Text PDF

Background: Isolated rapid-eye movement (REM) sleep behavior disorder (iRBD) is characterized by abnormal behaviors in REM sleep and is considered as a prodromal symptom of alpha-synucleinopathies. Resting-state functional magnetic resonance imaging (rsfMRI) studies have unveiled altered functional connectivity (rsFC) in patients with iRBD. However, the associations between intra- and inter-network rsFC with clinical symptoms and neuropsychological functioning in iRBD remain unclear.

View Article and Find Full Text PDF

Purpose: This study aimed to develop a deep learning (DL) model for brain region parcellation using CT data from PET/CT scans to enable accurate amyloid quantification in 18F-FBB PET/CT without relying on high-resolution MRI.

Patients And Methods: A retrospective dataset of PET/CT and T1-weighted MRI pairs from 226 individuals (157 with mild cognitive impairment or dementia and 69 healthy controls) was used. The dataset was split into training/validation (60%) and test (40%) sets.

View Article and Find Full Text PDF

The brain-gut microbiota network (BGMN) is correlated with symptom severity and neurocognition in patients with schizophrenia.

Neuroimage

January 2025

School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan. Electronic address:

The association between the human brain and gut microbiota, known as the "brain-gut-microbiota axis", is involved in the neuropathological mechanisms of schizophrenia (SZ); however, its association patterns and correlations with symptom severity and neurocognition are still largely unknown. In this study, 43 SZ patients and 55 normal controls (NCs) were included, and resting-state functional magnetic resonance imaging (rs-fMRI) and gut microbiota data were acquired for each participant. First, the brain features of brain images and functional brain networks were computed from rs-fMRI data; the gut features of gut microbiota abundance and the gut microbiota network were computed from gut microbiota data.

View Article and Find Full Text PDF

Objective: The relationship between small subcortical ischemic infarction remains poorly characterized. Therefore, the present study aimed to investigate the association between artery-to-artery embolization and small subcortical infarctions.

Methods: This retrospective observational cross-sectional study enrolling 230 patients with acute middle cerebral artery (MCA) stroke classified into the microembolic signals-positive (MES+) and MES-negative (MES-) groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!