We have used electron paramagnetic resonance (EPR) to study the effects of ATP and nucleotide analogs (mainly AMPPNP) on the orientation (measured by conventional EPR) and microsecond rotational dynamics (measured by saturation transfer EPR, STEPR) of spin-labeled myosin heads, both in glycerinated muscle fibers and in solutions of purified S1 and actin. Attachment to actin was determined by stiffness measurements in fibers and by covalent cross-linking in acto-S1. Our goal is to determine whether these nucleotides induce conformations of attached cross-bridges that have head orientations or motions significantly different from rigor. While all heads are immobile and similarly oriented in fibers in rigor, relaxation by ATP produces great orientational disorder that is dynamic on the microsecond time scale. AMPPNP produces intermediate amounts of both disorder and motion. However, even at saturating levels of AMPPNP, there are two principal resolved populations of heads, whose motion and orientation are indistinguishable from those of rigor and relaxation. Thus, there is no evidence that AMPPNP induces a myosin head conformation differing in either orientation or rotational motion from the rigor and relaxed states. Since fiber stiffness is not significantly decreased by AMPPNP, even though up to 50% of myosin heads are dynamically disordered, some of the dynamically disordered heads are probably in attached cross-bridges. Simultaneous measurements of binding and orientation of labeled S1 diffused into fibers or cross-linked to actin, indicate that AMPPNP-bound heads are dynamically disordered only when detached from actin. Thus, AMPPNP detaches one of the two heads of each cross-bridge without decreasing the cross-bridge's stiffness. In contrast to AMPPNP, ATP does induce considerable microsecond rotational mobility within cross-linked acto-S1, indicating that dynamic disorder of myosin heads may occur during the attached phase of an active cross-bridge cycle. Thus we have identified two nucleotide-induced cross-bridge conformations that are rotationally different from rigor, and similar conformations may play a role in the force-generation process.

Download full-text PDF

Source

Publication Analysis

Top Keywords

attached cross-bridges
12
myosin heads
12
dynamically disordered
12
microsecond rotational
8
heads
8
rigor relaxation
8
heads dynamically
8
amppnp
7
rigor
5
epr
4

Similar Publications

Oscillatory work and the step that generates force in single myofibrils from rabbit psoas.

Pflugers Arch

June 2024

Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, Romania.

The elementary molecular step that generates force by cross-bridges (CBs) in active muscles has been under intense investigation in the field of muscle biophysics. It is known that an increase in the phosphate (P) concentration diminishes isometric force in active fibers, indicating a tight coupling between the force generation step and the P release step. The question asked here is whether the force generation occurs before P release or after release.

View Article and Find Full Text PDF

Background: Modulating myosin function is a novel therapeutic approach in patients with cardiomyopathy. Danicamtiv is a novel myosin activator with promising preclinical data that is currently in clinical trials. While it is known that danicamtiv increases force and cardiomyocyte contractility without affecting calcium levels, detailed mechanistic studies regarding its mode of action are lacking.

View Article and Find Full Text PDF

Children with chronic kidney disease (CKD) frequently exhibit delayed physical development and reduced physical performance, presumably due to skeletal muscle dysfunction. However, the cellular and molecular basis of skeletal muscle impairment in juvenile CKD remains poorly understood. Cellular (single fiber) and molecular (myosin-actin interactions and myofilament properties) function was examined ex vivo in slow (soleus) and fast (extensor digitorum longus) contracting muscles of juvenile male (6 weeks old) CKD and control mice.

View Article and Find Full Text PDF
Article Synopsis
  • The heart's ability to pump effectively is influenced by myofilament power generation, which is determined by the force and velocity of heart muscle contractions at the sarcomere level.
  • Previous research indicated that PKA-mediated phosphorylation of myofibrillar proteins could boost power in rodent heart cells, and this study confirmed a similar 30% increase in human heart cells from patients with heart failure.
  • Specific alterations in cardiac troponin I, particularly pseudo-phosphorylation at certain sites, were found to enhance power output in both rat skeletal muscle and human heart muscle, suggesting that targeting these molecular changes could improve heart function in failing hearts.
View Article and Find Full Text PDF

Effect of active shortening and stretching on the rate of force re-development in rabbit psoas muscle fibres.

J Exp Biol

November 2022

Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada, T2N 1N4.

The steady-state isometric force produced by skeletal muscle after active shortening and stretching is depressed and enhanced, respectively, compared with purely isometric force produced at corresponding final lengths and at the same level of activation. One hypothesis proposed to account for these force depression (FD) and force enhancement (FE) properties is a change in cross-bridge cycling kinetics. The rate of cross-bridge attachment (f) and/or cross-bridge detachment (g) may be altered following active shortening and active stretching, leading to FD and FE, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!