A high-yield, highly diastereo- and enantioselective nitro-Mannich reaction of α-aryl nitromethanes with amidosulfones catalyzed by a novel chiral phase-transfer catalyst, bearing multiple H-bonding donors, derived from quinine was developed. A variety of α-aryl nitromethanes and amidosulfones were investigated; and the corresponding products were obtained in excellent yields with excellent diastereo- and enantioselectivities (up to 99% yield, > 99:1 dr and >99% ee). As a demonstration of synthetic utility, the resulting β-nitroamines could be converted to corresponding meso-symmetric and optically pure unsymmetric anti-1,2-diarylethylenediamines.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.7b00306DOI Listing

Publication Analysis

Top Keywords

α-aryl nitromethanes
12
nitromethanes amidosulfones
12
nitro-mannich reaction
8
reaction α-aryl
8
amidosulfones catalyzed
8
enantio- diastereoselective
4
diastereoselective nitro-mannich
4
catalyzed phase-transfer
4
phase-transfer catalysts
4
catalysts high-yield
4

Similar Publications

Carbazoles are nitrogen-containing aromatic heterocycles, having widespread applications in the field of photovoltaics. Carbazole-based photosensitizers have tunable features for absorption on semi-conductor (tellurium dioxide or zinc oxide) layers to create sufficient push-pull force in the conversion of sunlight into electrical energy, thus presenting as promising heterocyclic donor candidates to be used in dye-sensitized solar cells. For the synthesis of these dyes, various structural designs are available, namely, D-A, D-π-A, D-D-π-A, D-A-π-A, A-π-D-π-A-π-A, and D2-π-A that all involve incorporating carbazole as a donor (D), along with spacer (π-extender) moieties, such as thiophene, phenol, ethynylene, nitromethane, azine, thiadiazole, or acetonitrile.

View Article and Find Full Text PDF

Electrochemical synthesis of nitrosation compounds using CHNO as a nitroso reagent.

Chem Commun (Camb)

December 2024

Hefei National Research Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.

An electrochemical synthesis of various nitroso organic compounds (NOCs) from secondary amines was developed under metal-free and oxidant-free conditions. This method used commercially available nitromethane as the nitrosation reagent to provide various NOCs in good to excellent yields. Furthermore, the valuable drug molecule form desloratadine can be prepared by this method easily.

View Article and Find Full Text PDF

Synthesis of Hollowed Polyoxometalate with a Flipped VO Unit by the Elimination of a Centered Organic Molecule.

Inorg Chem

December 2024

Department of Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan.

Mechanistic understanding of the formation of clusters plays a role in designing the structure-dependent properties. Based on the fact that anions act as templates to form spherical polyoxovanadates, various structures were reported by changing anions in the synthetic solution. In this work, another factor in the formation of spherical polyoxometalates was demonstrated.

View Article and Find Full Text PDF

Here, we report an electrochemical approach to generate an aldoxime-substituted nitrile oxide via the activation of nitromethane. The Cu-catalyzed Huisgen reaction of this 1,3-dipole with alkynes enables successful preparation of 48 new isoxazole aldoximes, which are typically challenging to synthesize by other methods, in 52 to 97% yields with excellent regioselectivity and chemoselectivity in a single step. Moreover, 20 3,3'-bisisoxazoles are prepared from the isoxazole aldoxime products in good yields via a two-step sequence.

View Article and Find Full Text PDF

Using as example the [Fe(bpca)(μ-bpca)Gd(NO)]×4CHNO×CHOH system, where Hbpca=bis(2-pyridilcarbonyl)amine), we perform the analysis of bonding components inside the d and f coordination units and between molecular entities from crystal. Aside the nominal long-range interactions between molecular components of the crystal, we considered that the bonding inside the coordination units is also not a covalent regime. We performed Density Functional Theory (DFT) calculations, with plane-waves (PW), in band-structure mode, and with atom-centred bases, by molecular procedures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!