This paper presents a straightforward plasma treatment modification of graphene with an enhanced piezoresistive effect for the realization of a high-performance pressure sensor. The changes in the graphene in terms of its morphology, structure, chemical composition, and electrical properties after the NH/Ar plasma treatment were investigated in detail. Through a sufficient plasma treatment condition, our studies demonstrated that plasma-treated graphene sheet exhibits a significant increase in sensitivity by one order of magnitude compared to that of the unmodified graphene sheet. The plasma-doping introduced nitrogen (N) atoms inside the graphene structure and was found to play a significant role in enhancing the pressure sensing performance due to the tunneling behavior from the localized defects. The high sensitivity and good robustness demonstrated by the plasma-treated graphene sensor suggest a promising route for simple, low-cost, and ultrahigh resolution flexible sensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.7b02833 | DOI Listing |
Nanoscale Adv
December 2024
The Department of Chemistry & Biochemistry, The University of Texas at El Paso 500 W. University Ave. El Paso TX 79968 USA
Carbon nanomaterials (CNMs), such as carbon nanotubes (CNTs), graphene quantum dots (GQDs), and carbon quantum dots (CQDs), are prevalent in biological systems and have been widely utilized in applications like environmental sensing and biomedical fields. While their presence in human matrices is projected to increase, the interfacial interactions between carbon-based nanoscopic platforms and biomolecular systems continue to remain underexplored. In this study, we investigated the effect of gelatin-sourced CQDs on the globular milk protein beta-lactoglobulin (BLG).
View Article and Find Full Text PDFRSC Adv
January 2025
Nanoscience Program, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology New Borg El-Arab City Alexandria Egypt
We report herein a facile synthesis, characterization, and the electron transfer reaction of a novel light-harvesting material composed of laser-induced graphene (LIG) functionalized with the photoactive 5,10,15,20-tetrakis(4-trimethylammoniophenyl)porphyrin tetra(-toluenesulfonate) dye (TTMAPP). LIG was easily fabricated on the surface of a polyimide sheet using VersaLASER 3.6 (VLS 3.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
Hexagonal diamond (HD) was reported 60 years ago and has attracted extensive attention owing to its ultrahigh theoretical hardness, 58% superior to its cubic counterpart. However, to date, synthesizing pure HD under high-pressure and high-temperature (HPHT) remains unsuccessful due to the limitations of understanding the formation mechanism. In this work, employing a systematic molecular dynamics simulation, we directly observe the graphite-to-HD transition in a nucleation-growth mechanism.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Mechanical and Industrial Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States.
J Phys Chem Lett
December 2024
Biomolecular Physics Department, Faculty of Physics, Babeş-Bolyai University, 1 M. Kogalniceanu Str., 400084 Cluj-Napoca, Romania.
Surface-enhanced Raman spectroscopy (SERS) has emerged as a powerful tool for analyzing nucleic acids due to its exceptional sensitivity and specificity. This study rigorously investigates not only the impact of polyA strands of different lengths (, 5, 10, 15, and 20 adenine bases) but also their distinct grafting strategy (SH at 5' and NH at 5' end) on the SERS signal of DNA strand using synthesized gold nanoparticles (AuNPs) on graphene oxide sheets (GO-AuNPs). By comparing the thiol vs amine bonding onto the GO-AuNP nanoplatform, we found a strong correlation between the adenine peak intensity at 732 cm and the strand length for both grafting methods (SH at 5' end or NH at 5' end).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!