Hydronium Ion Batteries: A Sustainable Energy Storage Solution.

Angew Chem Int Ed Engl

State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China.

Published: June 2017

Hydronium ions have been reversibly stored for the first time in an electrode of crystalline 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA). A highly reversible discharge-charge behavior of PTCDA was observed in an aqueous acidic electrolyte of 1 m H SO . The capacity and the operation potentials are comparable to that of Na-ion storage in the same electrode.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201702160DOI Listing

Publication Analysis

Top Keywords

hydronium ion
4
ion batteries
4
batteries sustainable
4
sustainable energy
4
energy storage
4
storage solution
4
solution hydronium
4
hydronium ions
4
ions reversibly
4
reversibly stored
4

Similar Publications

The Hidden Mechanism: Excited-State Proton-Electron Pair Transfer in Metal Nanocluster Emission.

Angew Chem Int Ed Engl

October 2024

Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China.

Comprehending the underlying factors that govern photoluminescence (PL) in metal nanoclusters (NCs) under physiological conditions remains a highly intriguing and unresolved challenge, particularly for their biomedical applications. In this study, we evaluate the critical role of excited-state proton-coupled electron transfer in the emission of metal NCs. Our findings demonstrate that hydronium ion (HO) binding can trigger a nonlinear, pH-dependent excited-state concerted electron proton transfer (CEPT) reaction.

View Article and Find Full Text PDF

Scientific insights into water photolysis and radiolysis are essential for estimating the direct and indirect effects of deoxyribonucleic acid (DNA) damage. Secondary electrons from radiolysis intricately associated with both effects. In our previous paper, we simulated the femtosecond (1 × 10 s) dynamics of secondary electrons ejected by energy depositions of 11-19 eV into water via high-energy electron transport using a time-dependent simulation code.

View Article and Find Full Text PDF

Molecular dynamics simulations are used to examine the thermodynamic and structural aspects of the transfer of the classical hydronium ion (HO) across a water/1,2-dichloroethane (DCE) interface assisted by the phase-transfer catalyst (PTC) tetrakis(pentafluorophenyl) borate anion (TPFB). The free energy of transfer from water to DCE of the HO-TPFB ion pair is calculated to be 6 ± 1 kcal/mol, significantly less than that of the free hydronium ion (17 ± 1 kcal/mol). The ion pair is relatively stable at the interface and in the organic phase when it is accompanied by three water molecules with a small barrier to dissociation that supports its utility as a PTC.

View Article and Find Full Text PDF

Ostwald-Ripening Induced Interfacial Protection Layer Boosts 1,000,000-Cycled Hydronium-Ion Battery.

Angew Chem Int Ed Engl

December 2024

Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 130012, Changchun, China.

Collapsing and degradation of active materials caused by the electrode/electrolyte interface instability in aqueous batteries are one of the main obstacles that mitigate the capacity. Herein by reversing the notorious side reactions include the loss and dissolution of electrode materials, as we applied Ostwald ripening (OR) in the electrochemical cycling of a copper hexacyanoferrate electrode in a hydronium-ion batteries, the dissolved Cu and Fe ions undergo a crystallization process that creates a stable interface layer of cross-linked cubes on the electrode surface. The layer exposed the low-index crystal planes (100) and (110) through OR-induced electrode particle growth, supplemented by vacancy-ordered (100) superlattices that facilitated ion migration.

View Article and Find Full Text PDF

In the presence of water, hydronium ions formed within the micropores of zeolite H-BEA significantly influence the surrounding environment and the reactivity of organic substrates. The positive charge of these ions, coupled with the zeolite's negatively charged framework, results in an ionic environment that causes a strongly nonideal solvation behavior of cyclohexanol. This leads to a significantly higher excess chemical potential in the initial state and stabilizes at the same time the charged transition state in the dehydration of cyclohexanol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!