Unlabelled: A microbial fuel cell (MFC) integrated with adsorption system (MFC-AHS) is tested under various operating temperatures with palm oil mill effluent as the substrate. The optimum operating temperature for such system is found to be at ∼35°C with current, power density, internal resistance (R), Coulombic efficiency (CE) and maximum chemical oxygen demand (COD) removal of 2.51 ± 0.2 mA, 74 ± 6 mW m, 25.4 Ω, 10.65 ± 0.5% and 93.57 ± 1.2%, respectively. Maximum current density increases linearly with temperature at a rate of 0.1772 mA m °C, whereas maximum power density was in a polynomial function. The temperature coefficient (Q) is found to be 1.20 between 15°C and 35°C. Present studies have demonstrated better CE performance when compared to other MFC-AHSs. Generally, MFC-AHS has demonstrated higher COD removals when compared to standalone MFC regardless of operating temperatures.

Abbreviations: ACFF: activated carbon fiber felt; APHA: American Public Health Association; CE: Coulombic efficiency; COD: chemical oxygen demand; ECG: electrocardiogram; GAC: granular activated carbon; GFB: graphite fiber brush; MFC: microbial fuel cell; MFC-AHS: microbial fuel cell integrated with adsorption hybrid system; MFC-GG: microbial fuel cell integrated with graphite granules; POME: palm oil mill effluent; PTFE: polytetrafluoroethylene; SEM: scanning electron microscope.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2017.1320433DOI Listing

Publication Analysis

Top Keywords

microbial fuel
20
fuel cell
20
cell integrated
12
integrated adsorption
12
adsorption hybrid
8
hybrid system
8
palm oil
8
oil mill
8
mill effluent
8
power density
8

Similar Publications

The objective of this study is to evaluate the degradation of end-of-life BWRO membranes sourced from a factory in France by analyzing their water permeability, roughness, and chemical composition in order to diagnose the level of degradation incurred during their first life cycle in water softening. Following this, two new applications for the end-of-life BWRO membranes were investigated: (i) as ultrafiltration membranes (UF) for domestic effluent treatment and (ii) as cation exchange membranes (CEM) for use in fungal microbial fuel cells (FMFC). The UF membrane was renovated with an acetic acid treatment and, subsequently, used for domestic effluent filtration.

View Article and Find Full Text PDF

Metagenomic Insights into Pollutants in Biorefinery and Dairy Wastewater: rDNA Dominance and Electricity Generation in Double Chamber Microbial Fuel Cells.

Bioengineering (Basel)

January 2025

Environmental Pollution and Remediation Research Group, Department of Chemical Engineering, Mangosuthu University of Technology, P.O. Box 12363, Jacobs 4062, South Africa.

This study evaluates the potential of biorefinery and dairy wastewater as substrates for electricity generation in double chamber Microbial Fuel Cells (DCMFC), focusing on their microbial taxonomy and electrochemical viability. Taxonomic analysis using 16S/18S rDNA-targeted DGGE and high-throughput sequencing identified Proteobacteria as dominant in biorefinery biomass, followed by Firmicutes and Bacteriodota. In dairy biomass, Lactobacillus (77.

View Article and Find Full Text PDF

Solid-state fermentation of lignocellulosic waste to produce feed protein is a means of realising solid waste. However, low efficiency and susceptibility to microbial contamination remain significant challenges in feed protein production through room-temperature solid-state fermentation. In this study, thermophilic microbiomes were enriched.

View Article and Find Full Text PDF

Monoterpene -pinene exhibits significant potential as an alternative fuel, widely recognized for its affordability and eco-friendly nature. It demonstrates multiple biological activities and has a wide range of applications. However, the limited supply of pinene extracted from plants poses a challenge in meeting the needs of the aviation industry and other sectors.

View Article and Find Full Text PDF

This paper presents the effect of environmentally friendly additives on selected parameters and microbial degradation of Marine Diesel Oil (MDO). Microbiological contamination is a serious problem in MDO and other petroleum products. For this reason, it was decided to investigate the effects of environmentally friendly additives such as silver solution and colloidal nanosilver, as well as effective liquid microorganisms and ceramic tubes with different percentages of them in diesel oil (MDO) on its selected parameters and inhibition of bacterial and fungal growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!