Treatment of advanced melanoma with laser immunotherapy and ipilimumab.

J Biophotonics

Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research, University of Central Oklahoma, Edmond, Oklahoma, 73034, USA.

Published: May 2017

Immunotherapy has become a promising modality for melanoma, especially using checkpoint inhibitors, which revive suppressed T cells against the cancer. Such inhibitors should work better when combined with other treatments which could increase the number and quality of anti-tumor T cells. We treated one patient with advanced (stage IV) melanoma, using the combination of laser immunotherapy (LIT), a novel immunological approach for metastatic cancers that has been shown to stimulate adaptive immunity, and ipilimumab. The patient was treated with LIT, followed with one course of ipilimumab 3 months after the beginning of LIT. After LIT treatment, all treated cutaneous melanoma in head and neck cleared completely. After the application of ipilimumab, all the tumor nodules in the lungs decreased. The patient had remained tumor free for one year. While anecdotal, the responses seen in this patient support the hypothesis that laser immunotherapy increases the number and quality of anti-tumor T cells so that ipilimumab and other checkpoint inhibitors are more effective in enhancing the therapeutic effects. Picture: Schematic of treatment using laser immunotherapy and ipilimumab on a stage IV melanoma patient.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbio.201600271DOI Listing

Publication Analysis

Top Keywords

laser immunotherapy
16
immunotherapy ipilimumab
8
checkpoint inhibitors
8
number quality
8
quality anti-tumor
8
anti-tumor cells
8
stage melanoma
8
ipilimumab
6
melanoma
5
immunotherapy
5

Similar Publications

Hypoxic tumors present a significant challenge in cancer therapy due to their ability to adaptation in low-oxygen environments, which supports tumor survival and resistance to treatment. Enhanced mitophagy, the selective degradation of mitochondria by autophagy, is a crucial mechanism that helps sustain cellular homeostasis in hypoxic tumors. In this study, we develop an azocalix[4]arene-modified supramolecular albumin nanoparticle, that co-delivers hydroxychloroquine and a mitochondria-targeting photosensitizer, designed to induce cascaded oxidative stress by regulating mitophagy for the treatment of hypoxic tumors.

View Article and Find Full Text PDF

On-Demand Controlled Release Multi-Drugs Delivery System for Spatiotemporally Synergizing Antitumor Immunotherapy.

Adv Sci (Weinh)

January 2025

School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China.

Although cytotoxic T lymphocytes (CTLs) activation combined with programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) axis blockade have emerged as an effective strategy to improve immunotherapeutic potency, it remains challenging to realize the spatiotemporal synergy of these two components. Herein, the study reports an engineered bacterial-based delivery system that can simultaneously promote CTLs infiltration and control PD-L1 binding protein (PD-L1 trap) release on demand at tumor site. The drug release button of this tumor targeting system is the specific temperature, which is accomplished by dual-modified melanin nanoparticles with photothermal conversion capacity on the engineered bacterial.

View Article and Find Full Text PDF

Triple-action cancer therapy using laser-activated NO-releasing metallomicellar nanophotosensitizer for pyroptosis-driven immune reprogramming.

J Control Release

January 2025

Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea; DR.Cure Inc., Hwasun 58128, Republic of Korea. Electronic address:

Cancer photoimmunotherapy represents an intelligent and highly efficient therapeutic approach that harnesses the photothermal effect to precisely target and ablate tumor tissues, while simultaneously modulating the immune system to achieve tumor elimination. The integration of multifunctional therapeutic modalities for combined photoimmunotherapy requires advanced drug delivery systems. However, the design of a single nanoagent capable of serving as a multifunctional nanophotosensitizer remains a significant challenge.

View Article and Find Full Text PDF

Purpose: The confluence of laser interstitial thermal therapy (LITT) with immunotherapeutic approaches represents a promising option for managing recurrent brain lesions. However, the potential synergy between these modalities is still unclear. This meta-analysis examines the literature to elucidate the adverse effects and overall survival associated with this combination in treating recurrent brain metastases and glioblastoma.

View Article and Find Full Text PDF

Novel Ru(II) Complexes as Type-I/-II Photosensitizers for Multimodal Hypoxia-Tolerant Chemo-Photodynamic/Immune Therapy.

Mol Pharm

January 2025

School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China.

Photodynamic therapy (PDT) is increasingly regarded as an attractive approach for cancer treatment due to its advantages of low invasiveness, minimal side effects, and high efficiency. Here, two novel Ru(II) complexes , were designed and synthesized by coordinating phenanthroline and biquinoline ligands with Ru(II) center, and their chemo-photodynamic therapy and immunotherapy were explored. Both and exhibited significant phototoxicity against A549 and 4T1 tumor cells type-I/-II PDT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!