Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Despite its proven efficacy in improving symptoms and reducing exacerbations, many patients with asthma are not fully adherent to their steroid inhaler. Suboptimal adherence leads to poorer clinical outcomes and increased health service utilisation, and has been identified as a contributing factor to a third of asthma deaths in the UK. Reasons for non-adherence vary, and a variety of interventions have been proposed to help people improve treatment adherence.
Objectives: To assess the efficacy and safety of interventions intended to improve adherence to inhaled corticosteroids among people with asthma.
Search Methods: We identified trials from the Cochrane Airways Trials Register, which contains studies identified through multiple electronic searches and handsearches of other sources. We also searched trial registries and reference lists of primary studies. We conducted the most recent searches on 18 November 2016.
Selection Criteria: We included parallel and cluster randomised controlled trials of any duration conducted in any setting. We included studies reported as full-text articles, those published as abstracts only and unpublished data. We included trials of adults and children with asthma and a current prescription for an inhaled corticosteroid (ICS) (as monotherapy or in combination with a long-acting beta-agonist (LABA)). Eligible trials compared an intervention primarily aimed at improving adherence to ICS versus usual care or an alternative intervention.
Data Collection And Analysis: Two review authors screened the searches, extracted study characteristics and outcome data from included studies and assessed risk of bias. Primary outcomes were adherence to ICS, exacerbations requiring at least oral corticosteroids and asthma control. We graded results and presented evidence in 'Summary of findings' tables for each comparison.We analysed dichotomous data as odds ratios, and continuous data as mean differences or standardised mean differences, all using a random-effects model. We described skewed data narratively. We made no a priori assumptions about how trials would be categorised but conducted meta-analyses only if treatments, participants and the underlying clinical question were similar enough for pooling to make sense.
Main Results: We included 39 parallel randomised controlled trials (RCTs) involving adults and children with asthma, 28 of which (n = 16,303) contributed data to at least one meta-analysis. Follow-up ranged from two months to two years (median six months), and trials were conducted mainly in high-income countries. Most studies reported some measure of adherence to ICS and a variety of other outcomes such as quality of life and asthma control. Studies generally were at low or unclear risk of selection bias and at high risk of biases associated with blinding. We considered around half the studies to be at high risk for attrition bias and selective outcome reporting.We classified studies into four comparisons: adherence education versus control (20 studies); electronic trackers or reminders versus control (11 studies); simplified drug regimens versus usual drug regimens (four studies); and school-based directly observed therapy (three studies). Two studies are described separately.All pooled results for adherence education, electronic trackers or reminders and simplified regimens showed better adherence than controls. Analyses limited to studies using objective measures revealed that adherence education showed a benefit of 20 percentage points over control (95% confidence interval (CI) 7.52 to 32.74; five studies; low-quality evidence); electronic trackers or reminders led to better adherence of 19 percentage points (95% CI 14.47 to 25.26; six studies; moderate-quality evidence); and simplified regimens led to better adherence of 4 percentage points (95% CI 1.88 to 6.16; three studies; moderate-quality evidence). Our confidence in the evidence was reduced by risk of bias and inconsistency.Improvements in adherence were not consistently translated into observable benefit for clinical outcomes in our pooled analyses. None of the intervention types showed clear benefit for our primary clinical outcomes - exacerbations requiring an oral corticosteroid (OCS) (evidence of very low to low quality) and asthma control (evidence of low to moderate quality); nor for our secondary outcomes - unscheduled visits (evidence of very low to moderate quality) and quality of life (evidence of low to moderate quality). However, some individual studies reported observed benefits for OCS and use of healthcare services. Most school or work absence data were skewed and were difficult to interpret (evidence of low quality, when graded), and most studies did not specifically measure or report adverse events.Studies investigating the possible benefit of administering ICS at school did not measure adherence, exacerbations requiring OCS, asthma control or adverse events. One study showed fewer unscheduled visits, and another found no differences; data could not be combined.
Authors' Conclusions: Pooled results suggest that a variety of interventions can improve adherence. The clinical relevance of this improvement, highlighted by uncertain and inconsistent impact on clinical outcomes such as quality of life and asthma control, is less clear. We have low to moderate confidence in these findings owing to concerns about risk of bias and inconsistency. Future studies would benefit from predefining an evidence-based 'cut-off' for acceptable adherence and using objective adherence measures and validated tools and questionnaires. When possible, covert monitoring and some form of blinding or active control may help disentangle effects of the intervention from effects of inclusion in an adherence trial.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6478134 | PMC |
http://dx.doi.org/10.1002/14651858.CD012226.pub2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!