AI Article Synopsis

  • RNA silencing can suppress transgene expression in plants, but the mechanisms of this process vary between individual plants and generations, often unpredictably.
  • Research on the green fluorescent protein (GFP) gene in soybean showed that silencing usually begins in the primary leaves and can spread to seed coat tissues but is less likely to affect embryos.
  • The findings suggest that plant architecture plays a significant role in how RNA silencing initiates and spreads, indicating that both structural and genetic factors contribute to differences in transgene silencing among plants.

Article Abstract

The expression of transgenes introduced into a plant genome is sometimes suppressed by RNA silencing. Although local and systemic spread of RNA silencing have been studied, little is known about the mechanisms underlying spatial and temporal variation in transgene silencing between individual plants or between plants of different generations, which occurs seemingly stochastically. Here, we analyzed the occurrence, spread, and transmission of RNA silencing of the green fluorescent protein (GFP) gene over multiple generations of the progeny of a single soybean transformant. Observation of GFP fluorescence in entire plants of the T-T generations indicated that the initiation and subsequent spread of GFP silencing varied between individuals, although this GFP silencing most frequently began in the primary leaves. In addition, GFP silencing could spread into the outer layer of seed coat tissues but was hardly detectable in the embryos. These results are consistent with the notion that transgene silencing involves its reset during reproductive phase, initiation after germination, and systemic spread in each generation. GFP silencing was absent in the pulvinus, suggesting that its cortical cells inhibit cell-to-cell spread or induction of RNA silencing. The extent of GFP silencing could differ between the stem and a petiole or between petiolules, which have limited vascular bundles connecting them and thus deter long-distant movement of silencing. Taken together, these observations indicate that the initiation and/or spread of RNA silencing depend on specific features of the architecture of the plant in addition to the mechanisms that can be conserved in higher plants.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11248-017-0011-8DOI Listing

Publication Analysis

Top Keywords

rna silencing
24
gfp silencing
20
silencing
13
systemic spread
8
spread rna
8
transgene silencing
8
spread
7
gfp
7
rna
6
silencing life
4

Similar Publications

Role of PCBP2 in regulating nanovesicles loaded with curcumin to mitigate neuroferroptosis in neural damage caused by heat stroke.

J Nanobiotechnology

December 2024

Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, No. 359, Youhao North Road, Urumqi, Xinjiang, China.

Objective: This study aims to elucidate the mechanisms by which nanovesicles (NVs) transport curcumin(CUR) across the blood-brain barrier to treat hypothalamic neural damage induced by heat stroke by regulating the expression of poly(c)-binding protein 2 (PCBP2).

Methods: Initially, NVs were prepared from macrophages using a continuous extrusion method. Subsequently, CUR was loaded into NVs using sonication, yielding engineered cell membrane Nanovesicles loaded with curcumin (NVs-CUR), which were characterized and subjected to in vitro and in vivo tracking analysis.

View Article and Find Full Text PDF

Plant viruses have evolved different viral suppressors of RNA silencing (VSRs) to counteract RNA silencing which is a small RNA-mediated sequence-specific RNA degradation mechanism. Previous studies have already shown that the coat protein (CP) of cucumber mosaic virus (CMV) reduced RNA silencing suppression (RSS) activity of the VSR of CMV, the 2b protein. To demonstrate the universality of this CP-VSR interference, our study included three different viruses: CMV and peanut stunt virus (PSV) from the Bromoviridae, and plum pox virus (PPV) from the Potyviridae family.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) has been a clinical challenge due to its high recurrence and metastasis rates. Chemotherapy remains the primary treatment for TNBC after surgery ablation, but it lacks targeted specificity and causes side effects in normal tissues. Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is significantly expressed in TNBC cells, and small interference RNA (siRNA) targeting ROR1 can effectively suppress ROR1 gene expression, thereby inhibiting proliferation and metastasis.

View Article and Find Full Text PDF

RNA silencing is a core cellular process that acts to defend the genome against potentially damaging genetic elements such as viruses and transposons. It has been extensively characterized in many eukaryotes and exploited as a tool for determining gene function through removing the activity of specific genes. It has also been used in Phytophthora species to reveal genes involved in different lifecycle stages.

View Article and Find Full Text PDF

Paroxetine promotes longevity via ser-7-dop-4-IIS axis in Caenorhabditis elegans.

Geroscience

December 2024

Center for Aging Biomedicine, College of Life Sciences, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Normal University, 36 Lushan Road, Changsha, 410081, Hunan, China.

Paroxetine, a selective serotonin reuptake inhibitor, is widely used in the clinical treatment of depression. While several antidepressants show promise as geroprotectors, the role of paroxetine in aging remains unclear. In this study, we evaluated the lifespan extension effect of paroxetine in Caenorhabditis elegans (C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!