Interactions between the polo-like kinase 1 (PLK1) inhibitor volasertib and the histone deacetylase inhibitor (HDACI) belinostat were examined in diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) cells in vitro and in vivo. Exposure of DLBCL cells to very low concentrations of volasertib in combination with belinostat synergistically increased cell death (apoptosis). Similar interactions occurred in GC-, ABC-, double-hit DLBCL cells, MCL cells, bortezomib-resistant cells and primary lymphoma cells. Co-exposure to volasertib/belinostat induced a marked increase in M-phase arrest, phospho-histone H3, mitotic errors, cell death in M-phase, and DNA damage. Belinostat diminished c-Myc mRNA and protein expression, an effect significantly enhanced by volasertib co-exposure. c-Myc knock-down increased DNA damage and cell death in response to volasertib, arguing that c-Myc down-regulation plays a functional role in the lethality of this regimen. Notably, PLK1 knock-down in DLBCL cells significantly increased belinostat-induced M-phase accumulation, phospho-histone H3, γH2AX, and cell death. Co-administration of volasertib and belinostat dramatically reduced tumor growth in an ABC-DLBCL flank model (U2932) and a systemic double-hit lymphoma model (OCI-Ly18), accompanied by a pronounced increase in survival without significant weight loss or other toxicities. Together, these findings indicate that PLK1/HDAC inhibition warrants attention as a therapeutic strategy in NHL.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5458223 | PMC |
http://dx.doi.org/10.18632/oncotarget.15649 | DOI Listing |
Background And Aim: The high rate of tumor growth results in an increased need for amino acids. As solute carriers (SLC) transporters are capable of transporting different amino acids, cancer may develop as a result of these transporters' over-expression due to their complex formation with other biological molecules. Therefore, this review investigated the role of SLC transporters in the progression of cancer.
View Article and Find Full Text PDFVet Res Forum
November 2024
Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Docetaxel (DTX) is widely utilized in breast cancer treatment. However, cancer cell resistance has limited its anti-tumor efficacy. Some molecules called microRNAs (miRNAs), acting like fine-tuned switches, can influence how breast cancer develops and spreads.
View Article and Find Full Text PDFInt J Cardiol Heart Vasc
February 2025
Department of Geriatrics, Peking University Third Hospital, Beijing 100191, PR China.
Background: Ferroptosis is a cell death process that depends on iron and reactive oxygen species. It significantly contributes to cardiovascular diseases. However, its exact role in ischemic cardiomyopathy (ICM) is still unclear.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China.
Introduction: The mechanism of remimazolam, a benzodiazepine that activates γ-aminobutyric acid a (GABAa) receptors, in cerebral ischemia/reperfusion (I/R) injury is not well understood. Therefore, we explored whether remimazolam activates protein kinase B (AKT)/glycogen synthase kinase-3β (GSK-3β)/nuclear factor erythroid 2-related factor 2 (NRF2) to attenuate brain I/R injury in transcerebral I/R-injured rats and transoxygenic glucose deprivation/reperfusion (OGD/R)-injured SY5Y cells.
Material And Methods: Remimazolam was added at the beginning of cell and rat reperfusion, and the PI3K/AKT inhibitor LY294002 was added to inhibit the AKT/GSK-3β/NRF2 pathway 24 h before cellular OGD/R treatment and 30 min before rat brain I/R treatment.
Acta Pharm Sin B
December 2024
Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea.
Combination therapy with checkpoint inhibitors blocks inhibitory immune cell signaling and improves clinical responses to anticancer treatments. However, continued development of innovative and controllable delivery systems for immune-stimulating agents is necessary to optimize clinical responses. Herein, we engineered to deliver recombinant granulocyte macrophage colony stimulating factor (GM-CSF) in a controllable manner for combination treatment with a programmed death-ligand 1 (PD-L1) inhibitor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!