Global water cycle and the coevolution of the Earth's interior and surface environment.

Philos Trans A Math Phys Eng Sci

Department of Geology and Geophysics, Yale University, New Haven, CT 06520, USA.

Published: May 2017

The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a number of different ways. The foremost issue is the occurrence of plate tectonics, which governs almost all aspects of the Earth system, and the presence of water could either promote or hinder the operation of plate tectonics, depending on where water resides. The global water cycle, which circulates surface water into the deep mantle and back to the surface again, could thus have played a critical role in the Earth's history. In this contribution, we first review the present-day water cycle and discuss its uncertainty as well as its secular variation. If the continental freeboard has been roughly constant since the Early Proterozoic, model results suggest long-term net water influx from the surface to the mantle, which is estimated to be 3-4.5×10 g yr on the billion years time scale. We survey geological and geochemical observations relevant to the emergence of continents above the sea level as well as the nature of Precambrian plate tectonics. The global water cycle is suggested to have been dominated by regassing, and its implications for geochemical cycles and atmospheric evolution are also discussed.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5394256PMC
http://dx.doi.org/10.1098/rsta.2015.0393DOI Listing

Publication Analysis

Top Keywords

water cycle
16
global water
12
plate tectonics
12
water
10
cycle
4
cycle coevolution
4
coevolution earth's
4
earth's interior
4
surface
4
interior surface
4

Similar Publications

Metagenomic Analysis Revealing the Impact of Water Contents on the Composition of Soil Microbial Communities and the Distribution of Major Ecological Functional Genes in Poyang Lake Wetland Soil.

Microorganisms

December 2024

Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China.

Poyang Lake is the largest freshwater lake in China, which boasts unique hydrological conditions and rich biodiversity. In this study, metagenomics technology was used to sequence the microbial genome of soil samples S1 (sedimentary), S2 (semi-submerged), and S3 (arid) with different water content from the Poyang Lake wetland; the results indicate that the three samples have different physicochemical characteristics and their microbial community structure and functional gene distribution are also different, resulting in separate ecological functions. The abundance of typical ANME archaea and the high abundance of in S1 mutually demonstrate prominent roles in the methane anaerobic oxidation pathway during the methane cycle.

View Article and Find Full Text PDF

is a body-louse-borne bacterium. Canadian disease has been reported primarily in populations experiencing homelessness and in Indigenous communities with limited access to water. We sought to understand the epidemiology of in Canada.

View Article and Find Full Text PDF

Herein, the study explores a composite modification approach to enhance the use of recycled concrete aggregate (RCA) in sustainable construction by combining accelerated carbonation (AC) and nano-silica immersion (NS). RCA, a major source of construction waste, faces challenges in achieving comparable properties to virgin aggregates. Nano-silica, a potent pozzolan, is added to fill micro-cracks and voids in RCA, improving its bonding and strength.

View Article and Find Full Text PDF

Concrete, as the most widely used construction material globally, is prone to cracking under the influence of external factors such as mechanical loads, temperature fluctuations, chemical corrosion, and freeze-thaw cycles. Traditional concrete crack repair methods, such as epoxy resins and polymer mortars, often suffer from a limited permeability, poor compatibility with substrates, and insufficient long-term durability. Microbial biogrouting technology, leveraging microbial-induced calcium carbonate precipitation (MICP), has emerged as a promising alternative for crack sealing.

View Article and Find Full Text PDF

Application of a Generalized Utility Function to Determine the Optimal Composition of Geopolymer Mortar.

Materials (Basel)

December 2024

Department of Building Materials Engineering, Faculty of Civil Engineering, Warsaw University of Technology, Armii Ludowej 16, 00-637 Warsaw, Poland.

The aim of the presented research was to evaluate the impacts of modifications to the technical properties of fly ash-based geopolymer composites, particularly focusing on enhancing the thermal insulation. Through the utilization of a generalized utility function, optimal dosages of additives such as perlite sand, waste perlite powder, and cenospheres were determined. The study aimed to increase the thermal insulation of the composites while maintaining satisfactory compressive and flexural strength.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!