A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High resolution data analysis strategies for mesoscale human functional MRI at 7 and 9.4T. | LitMetric

High resolution data analysis strategies for mesoscale human functional MRI at 7 and 9.4T.

Neuroimage

Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands; Department of Neuroimaging and Neuromodeling, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands. Electronic address:

Published: January 2018

The advent of ultra-high field functional magnetic resonance imaging (fMRI) has greatly facilitated submillimeter resolution acquisitions (voxel volume below (1mm³)), allowing the investigation of cortical columns and cortical depth dependent (i.e. laminar) structures in the human brain. Advanced data analysis techniques are essential to exploit the information in high resolution functional measures. In this article, we use recent, exemplary 9.4T human functional and anatomical data to review the advantages and disadvantages of (1) pooling high resolution data across regions of interest for cortical depth profile analysis, (2) pooling across cortical depths for mapping patches of cortex while discarding depth-dependent (i.e. columnar) effects, and (3) isotropic sampling without pooling to assess individual voxel's responses. A set of cortical depth meshes may be a solution to sampling information tangentially while keeping correspondence across depths. For quantitative analysis of the spatial organization in fine-grained structures, a cortical grid approach is advantageous. We further extend this general framework by combining it with a previously introduced cortical layer volume-preserving (equi-volume) approach. This framework can readily accommodate the research questions which allow for spatial smoothing within or across layers. We demonstrate and discuss that equi-volume sampling yields a slight advantage over equidistant sampling given the current limitations of fMRI voxel size, participant motion, coregistration and segmentation. Our 9.4T human anatomical and functional data indicate the advantage over lower fields including 7T and demonstrate the practical applicability of T and T-weighted fMRI acquisitions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5745233PMC
http://dx.doi.org/10.1016/j.neuroimage.2017.03.058DOI Listing

Publication Analysis

Top Keywords

high resolution
12
cortical depth
12
resolution data
8
data analysis
8
human functional
8
94t human
8
cortical
7
data
5
functional
5
analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!