Antibody-based immunotherapy represents a promising strategy to eliminate chemorefractory leukemic cells in acute myeloid leukemia (AML). In this study, we evaluated a novel Fc-engineered antibody against CD157 (MEN1112) for its suitability as immunotherapy in AML. CD157 was expressed in 97% of primary AML patient samples. A significant, albeit lower expression level of CD157 was observed within the compartment of leukemia-initiating cells, which are supposed to be the major source of relapse. In healthy donor bone marrow, CD157 was expressed on CD34+ cells. In ex vivo assays, MEN1112 triggered natural killer (NK) cell-mediated cytotoxicity against AML cell lines and primary AML cells. Compared to its parental analogue, the Fc-engineered antibody exhibited higher antibody dependent cellular cytotoxicity responses. Using NK cells from AML patients, we observed heterogeneous MEN1112-mediated cytotoxicity against AML cells, most likely due to well-documented defects in AML-NK cells and corresponding inter-patient variations in NK cell function. Cytotoxicity could not be correlated to the time after completion of chemotherapy. In summary, we could demonstrate that CD157 is strongly expressed in AML. MEN1112 is a promising antibody construct that showed high cytotoxicity against AML cells and warrants further clinical testing. Due to variability in NK-cell function of AML patients, the time of application during the course of the disease as well as combinatorial strategies might influence treatment results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5482610 | PMC |
http://dx.doi.org/10.18632/oncotarget.16060 | DOI Listing |
AAPS J
December 2024
Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA.
Optimizing the interaction between antibody (mAb)-based therapeutics and immune effector functions (EFs) offers opportunities to improve the therapeutic window of these molecules. However, the role of EFs in antibody-drug conjugate (ADC) efficacy and toxicity remains unknown, with limited studies that have investigated how modulation of EF affects the pharmacology of ADCs. This study aimed to evaluate the effect of EF modulation on ADC efficacy using trastuzumab-vc-MMAE as a model ADC.
View Article and Find Full Text PDFClin Drug Investig
December 2024
Queensland Brain Institute, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
Background: Erythropoietin-producing hepatocellular carcinoma A4 (EphA4) is implicated in the pathophysiology of amyotrophic lateral sclerosis. EphA4 fusion protein (EphA4-Fc) inhibits EphA4 function in vivo but is too short-lived for prolonged therapy. NUN-004 (mEphA4-Fc) is a modified EphA4-Fc engineered for an extended half-life.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA.
Herpes simplex virus (HSV) encodes surface glycoproteins that are host defense evasion molecules, allowing the virus to escape immune clearance. In addition to their role in neuropathogenesis and cell-cell spread, glycoproteins E and I (gE/gI) form a viral Fc receptor (vFcR) for most subclasses and allotypes of human IgG and promote evasion of humoral immune responses. While monoclonal antibodies (mAbs) protect mice from neonatal HSV (nHSV) infections, the impact of the vFcR on mAb-mediated protection by binding to IgG is unknown.
View Article and Find Full Text PDFTrends Mol Med
November 2024
Vir Biotechnology, San Francisco, CA, 94158, USA.
The development of checkpoint antibodies for cancer therapy has been guided by the principle of blocking T cell inhibitory signals. Recognition of the role of the Fc domain in therapeutic activities, through the depletion of immunosuppressive populations and myeloid cell activation, prompts a shift toward the development of optimized Fc-engineered checkpoint antibodies.
View Article and Find Full Text PDFMAbs
October 2024
Large Molecules Research, Sanofi, Cambridge, MA, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!