In this study, composite cements containing mesoporous magnesium silicate (m-MS) and calcium sulfate (CS) were fabricated. The results revealed that the setting time of the m-MS/CS composite cements (m-MSC) slightly prolonged with the increase of m-MS content while the compressive strength suffered a little loss. The doping of m-MS improved the water absorption, drug release (vancomycin) and degradability of the m-MSC in Tris-HCl solution (pH=7.4). In addition, addition of m-MS facilitated the apatite-mineralization of m-MSC in simulated body fluid (SBF), indicating good bioactivity. For cell cultural experiments, the results revealed that the m-MSC promoted the cells adhesion and proliferation, and improved the alkaline phosphatase (ALP) activity of MC3T3-E1 cells, revealing good cytocompatibility. It could be suggested that the m-MSC might be promising cements biomaterials for bone tissue regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2017.02.100 | DOI Listing |
Anal Methods
January 2025
CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, 364 002, India.
In this study, magnesium-doped lithium manganese oxide nanoparticles were prepared through a solid-state reaction technique, and their surface was modified with mesoporous silica. The surface-modified material exhibited a significantly enhanced BET surface area from 5.791 to 66.
View Article and Find Full Text PDFJ Environ Manage
February 2025
Department of Chemistry, College of Science and Humanites at Al-Quway'iyahl, Shaqra University, Saudi Arabia. Electronic address:
This study considered the effects of fluoride, MgO, sucrose, and rGO on the characteristics of the fluoride-carbon-MgO/rGO predicted (F-C-MgO/rGOP) catalyst and its effectiveness in the catalytic ozonation process (COP) for atrazine elimination from aqueous solutions. Using a mixture design, the catalyst composition was optimized to 13.6% sucrose, 50% Mg (OH)2, 25% NaF, and 11.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2025
Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, Cairo, Egypt.
Treating severe bone deformities and abnormalities continues to be a major clinical hurdle, necessitating the adoption of suitable materials that can actively stimulate bone regeneration. Magnesium phosphate (MP) is a material that has the ability to stimulate the growth of bones. The current study involved the synthesis of mesoporous MP and lanthanum (La)-doped nanopowders using a chemical precipitation approach.
View Article and Find Full Text PDFACS Nano
November 2024
Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
Mesoporous silica nanoparticles (MSNs) have gained wide application as excellent carrier materials; however, their limited degradation in the biological system and potential chronic toxicity pose challenges to their clinical applications. Previous studies have focused on optimizing the elimination performance of MSNs; interestingly, silicon has been well-documented as an essential body component. Therefore, converting MSNs into a form readily utilizable by the organism is a way to turn waste into a valuable resource.
View Article and Find Full Text PDFInd Eng Chem Res
September 2024
Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy.
Propane dehydrogenation reaction (PDH) is an extremely attractive way to produce propylene; however, the catalysts often lead to byproduct formation and suffer from deactivation. This research focuses on the development of efficient Pt/Sn-based shaped catalysts by utilizing Mg-modified mesoporous silica, sepiolite (natural SiMgO mesoporous clay), and sepiolite/bentonite/alumina as supports with the aim of achieving superior stability and selectivity for industrial propylene production by PDH. The catalysts were prepared by sequential impregnation of the supports with the corresponding solutions of tin chloride and platinum chloride, by obtaining a nominal loading of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!