This work demonstrates the effective surface functionalization of Ag, Au and bimetallic Ag-Au nanoparticles using l-histidine for colorimetric detection of dopamine (DA) which plays majorly in recognizing the neurological disorder. l-Histidine (l-His) capped Ag, Au, and bimetallic Ag-Au nanoparticles are characterized using physico-chemical techniques. The optical behaviour of nanoparticles has been analysed at various time intervals using UV-Vis absorption spectroscopy. FT-IR results provide the evidence of chemical bonding between l-histidine and metal nanoparticles. Its structure with the capping of l-His was clearly shown in HR-TEM images. The average size of nanoparticles has calculated from TEM image fringes are 11nm, 5nm and 6.5nm respectively, matches with crystals size calculated from X-ray diffraction pattern. Enhanced optical nature of nanoparticles provides the best platform to develop a colorimetric-based biosensor for DA detection. After addition of DA, a rapid colour change has been noted in colloids of nanoparticles. The substantial changes in absorbance and λ in metal nanoparticles respect to DA concentration have been observed and formulated. This is one of the successive methods for trace level determination of DA and will be going to a significant material for designing biosensor to determine DA in real extracellular body fluids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2016.11.102 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!