The polyimide Kapton® was coated photochemically with hydrophilic polymers to prevent undesirable cell growth on the polyimide surface. The polymer coatings were generated using photochemically reactive polymers synthesized by a simple and modular strategy. Suitable polymers or previously synthesized copolymer precursors were functionalized with photoactive arylazide groups by a polymer analogous amide coupling reaction with 4-azidobenzoic acid. A photoactive chitosan derivative (chitosan-Az) and photochemically reactive copolymers containing DMAA, DEAA or MTA as primary monomers were synthesized using this method. The amount of arylazide groups in the polymers was adjusted to approximately 5%, 10% and 20%. As coating on Kapton® all polymers effect a significantly reduced water contact angle (WCA) and consequently a rise of the surface hydrophilicity compared to the untreated Kapton®. The presence of the polymer coatings was also proven by ATR-IR spectroscopy. Coatings with chitosan-Az and the DEAA copolymer cause a distinct inhibition of the growth of fibroblasts. In the case of the DMAA copolymer even a strong anti-adhesive behavior towards fibroblasts was verified. Biocompatibility of the polymer coatings was proven which enables their utilization in biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2017.02.020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!