We investigate the stationary-state fluctuations of a growing one-dimensional interface described by the Kardar-Parisi-Zhang (KPZ) dynamics with a noise featuring smooth spatial correlations of characteristic range ξ. We employ nonperturbative functional renormalization group methods to resolve the properties of the system at all scales. We show that the physics of the standard (uncorrelated) KPZ equation emerges on large scales independently of ξ. Moreover, the renormalization group flow is followed from the initial condition to the fixed point, that is, from the microscopic dynamics to the large-distance properties. This provides access to the small-scale features (and their dependence on the details of the noise correlations) as well as to the universal large-scale physics. In particular, we compute the kinetic energy spectrum of the stationary state as well as its nonuniversal amplitude. The latter is experimentally accessible by measurements at large scales and retains a signature of the microscopic noise correlations. Our results are compared to previous analytical and numerical results from independent approaches. They are in agreement with direct numerical simulations for the kinetic energy spectrum as well as with the prediction, obtained with the replica trick by Gaussian variational method, of a crossover in ξ of the nonuniversal amplitude of this spectrum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.95.032117 | DOI Listing |
Nano Lett
January 2025
Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.
Recent experiments have shown that exciton transport can be significantly enhanced through hybridization with confined photonic modes in a cavity. The light-matter hybridization generates exciton-polariton (EP) bands, whose group velocity is significantly larger than the excitons. Dissipative mechanisms that affect the constituent states of EPs, such as exciton-phonon coupling and cavity loss, have been observed to reduce the group velocities in experiments.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Theoretical Science, Poornaprajna Institute of Scientific Research, Ranjith Kumar R, Department of Physics, Indian Institute of Technoloby Bombay, Mumbai, 400076, INDIA.
Understanding the critical properties is essential for determining the physical behavior of topological systems. In this context, scaling theories based on the curvature function in momentum space, the renormalization group (RG) method, and the universality of critical exponents have proven effective. In this work, we develop a scaling theory for non-Hermitian topological states of matter.
View Article and Find Full Text PDFNicotine Tob Res
January 2025
Southwest Interdisciplinary Research Center, School of Social Work, Arizona State University, Phoenix, AZ, USA.
Introduction: Use of electronic nicotine delivery systems (ENDS) may contribute to cigarette use and nicotine addiction by shifting perceptions and norms around tobacco, but little is known about whether or how ENDS use and norms are related to cigarette use and norms, particularly among young adults. This study tested two potential mechanisms by which END use may facilitate cigarette use: decreasing tobacco harm perceptions (desensitization) and increasing favorability of tobacco use (renormalization).
Method: Analyses included data from 2187 young adults in a longitudinal panel who reported any ENDS or combustible cigarette use at ages 21, 23, or 26.
J Chem Phys
January 2025
Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
Typical path integral Monte Carlo approaches use the primitive approximation to compute the probability density for a given path. In this work, we develop the pair discrete variable representation (pair-DVR) approach to study molecular rotations. The pair propagator, which was initially introduced to study superfluidity in condensed helium, is naturally well-suited for systems interacting with a pairwise potential.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India.
An exotic quantum mechanical ground state, i.e. the non-magnetic= 0 state, has been predicted for higher transition metalt2g4systems, due to the influence of strong spin-orbit coupling (SOC) or in other words, due to unquenched orbital moment contribution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!