The elastic moduli of a transversely isotropic model granular material, made of slightly polydisperse elastic-frictional spherical beads, in equilibrium along a one-dimensional (oedometric) compression path, as described in the companion paper [M. H. Khalili et al., Phys. Rev. E 95, 032907 (2017)]10.1103/PhysRevE.95.032907, are investigated by numerical simulations. The relations of the five independent moduli to stresses, density, coordination number, fabric and force anisotropies are studied for different internal material states along the oedometric loading path. It is observed that elastic moduli, as in isotropic packs, are primarily determined by the coordination number, with anomalously small shear moduli in poorly coordinated systems, whatever their density. Such states also exhibit faster increasing moduli in compression, and larger off-diagonal moduli and Poisson ratios. Anisotropy affects the longitudinal moduli C_{11} in the axial direction and C_{22} in the transverse directions, and the shear modulus in the transverse plane C_{44}, more than the shear modulus in a plane containing the axial direction C_{55}. The results are compared to available experiments on anisotropic bead packs, revealing, despite likely differences in internal states, a very similar range of stiffness level (linked to coordination), and semiquantitative agreement as regards the influence of anisotropy. Effective medium theory (the Voigt approach) provides quite inaccurate predictions of the moduli. It also significantly underestimates ratios C_{11}/C_{22} (varying between 1 and 2.2) and C_{55}/C_{44} (varying from 1 to 1.6), which characterize elastic anisotropy, except in relatively weakly anisotropic states. The bulk modulus for isotropic compression and the compliance corresponding to stress increments proportional to the previous stress values are the only elastic coefficients to be correctly estimated by available predictive relations. We discuss the influences of fabric and force anisotropies onto elastic anisotropy, showing in particular that the former dominates in sample series that are directly assembled in anisotropic configurations and keep a roughly constant lateral to axial stress ratio under compression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.95.032908 | DOI Listing |
Front Bioeng Biotechnol
January 2025
Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
Background: Currently, some novel rods with lower elastic modulus have the potential as alternatives to traditional titanium alloy rods in lumbar fusion. However, how the elastic modulus of the rod (rod-E) influences the biomechanical performance of lumbar interbody fusion remains unclear. This study aimed to explore the quantitative relationships between rod-E and the biomechanical performance of transforaminal lumbar interbody fusion (TLIF).
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Institute of Process Systems Engineering, University of Stuttgart, Böblinger Str. 78, 70199 Stuttgart, Germany. Electronic address:
Hydrogels are natural/synthetic polymer-based materials with a large percentage of water content, usually above 80 %, and are suitable for many application fields such as wearable sensors, biomedicine, cosmetics, agriculture, etc. However, their performance is susceptible to environmental changes in temperature, relative humidity, and mechanical deformation due to their aqueous and soft nature. We investigate the mechanical response of both filled and unfilled alginate/gellan hydrogels using a combined axial-torsional rheometric approach with cylindrical samples of large length/diameter ratio under controlled temperature and relative humidity.
View Article and Find Full Text PDFData Brief
February 2025
Université Paris-Saclay, CEA, CNRS, SPEC, 91191 Gif-sur-Yvette, France.
Silicate glasses are commonly used for many important industrial applications. As such, the literature provides a wealth of different structural, physical, thermodynamic and mechanical properties for many different chemical compositions of oxide glasses. However, a frequent limitation to existing datasets is that only one or two material properties can be evaluated for a given sample.
View Article and Find Full Text PDFACS Earth Space Chem
January 2025
Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, Texas 78249, United States.
In this study, we measured the single-crystal elasticity of α-hydroquinone at ambient conditions using Brillouin spectroscopy to assess the feasibility of this technique for studying the mechanical properties of organic ices in the outer solar system. In this study, α-hydroquinone serves as an ambient temperature analogue for low-temperature organic ices on Titan and other solar system bodies. We found that a satisfactory Brillouin spectrum can be obtained in less than 5 min of experimental time with negligible damage to the sample.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
Nature uses fibrous structures for sensing and structural functions as observed in hairs, whiskers, stereocilia, spider silks, and hagfish slime thread skeins. Here, we demonstrate multi-nozzle printing of 3D hair arrays having freeform trajectories at a very high rate, with fiber diameters as fine as 1.5 µm, continuous lengths reaching tens of centimeters, and a wide range of materials with elastic moduli from 5 MPa to 3500 MPa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!