This article presents a three-dimensional numerical framework for the simulation of fluid-fluid immiscible compounds in complex geometries, based on the multiple-relaxation-time lattice Boltzmann method to model the fluid dynamics and the color-gradient approach to model multicomponent flow interaction. New lattice weights for the lattices D3Q15, D3Q19, and D3Q27 that improve the Galilean invariance of the color-gradient model as well as for modeling the interfacial tension are derived and provided in the Appendix. The presented method proposes in particular an approach to model the interaction between the fluid compound and the solid, and to maintain a precise contact angle between the two-component interface and the wall. Contrarily to previous approaches proposed in the literature, this method yields accurate solutions even in complex geometries and does not suffer from numerical artifacts like nonphysical mass transfer along the solid wall, which is crucial for modeling imbibition-type problems. The article also proposes an approach to model inflow and outflow boundaries with the color-gradient method by generalizing the regularized boundary conditions. The numerical framework is first validated for three-dimensional (3D) stationary state (Jurin's law) and time-dependent (Washburn's law and capillary waves) problems. Then, the usefulness of the method for practical problems of pore-scale flow imbibition and drainage in porous media is demonstrated. Through the simulation of nonwetting displacement in two-dimensional random porous media networks, we show that the model properly reproduces three main invasion regimes (stable displacement, capillary fingering, and viscous fingering) as well as the saturating zone transition between these regimes. Finally, the ability to simulate immiscible two-component flow imbibition and drainage is validated, with excellent results, by numerical simulations in a Berea sandstone, a frequently used benchmark case used in this field, using a complex geometry that originates from a 3D scan of a porous sandstone. The methods presented in this article were implemented in the open-source PALABOS library, a general C++ matrix-based library well adapted for massive fluid flow parallel computation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.95.033306 | DOI Listing |
Sci Rep
December 2024
Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2600 GA, Delft, The Netherlands.
To safely and efficiently utilize porous reservoirs for underground hydrogen storage (UHS), it is essential to characterize hydrogen transport properties at multiple scales. In this study, hydrogen/brine multiphase flow at 50 bar and 25 °C in a 17 cm Berea sandstone rock core was characterized and visualized at the pore and core scales using micro X-ray CT. The experiment included a single drainage and imbibition cycle during which relative permeability hysteresis was measured, and two no-flow periods to study the redistribution of hydrogen in the pore space during storage periods.
View Article and Find Full Text PDFSci Total Environ
December 2024
Civil & Environmental Engineering Department, Hydrologic Science and Engineering Program, Hydrologic Science & Engineering Program, ReNuWit-The Urban Water Engineering Research Center, Colorado School of Mines, Golden, CO 80401, USA. Electronic address:
Sci Rep
September 2024
Enhanced Oil Recovery (EOR) Research Centre, IOR-EOR Research Institute, Shiraz University, Shiraz, Iran.
The drainage and imbibition processes are critical mechanisms in petroleum engineering. These processes in a porous medium are controlled by surface forces and pressure gradients. The study of these processes in the pore scale by common simulators always has limitations in multiphase flow modeling.
View Article and Find Full Text PDFJ Contam Hydrol
September 2024
School of Marine Sciences, Sun Yat-sen University, Zhuhai, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Zhuhai, China.
The residual air saturation plays a crucial role in modeling hydrological processes of groundwater and the migration and distribution of contaminants in subsurface environments. However, the influence of factors such as media properties, displacement history, and hydrodynamic conditions on the residual air saturation is not consistent across different displacement scenarios. We conducted consecutive drainage-imbibition cycles in sand-packed columns under hydraulic conditions resembling natural subsurface environments, to investigate the impact of wetting flow rate, initial fluid state, and number of imbibition rounds (NIR) on residual air saturation.
View Article and Find Full Text PDFEnergy Fuels
August 2024
Marine Geology & Energy Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), 124 Gwahak-ro, Daejeon 34132, Republic of Korea.
We develop a numerically stable algorithm of intrinsic capillary hysteresis for numerical simulation of gas hydrate deposits where cyclic drainage and imbibition processes occur. The algorithm is motivated by the elastoplastic return mapping, and it is an extension of the recently developed algorithm of two-phase immiscible flow, which provides numerical stability with the fully implicit method. We consider the effective gas and aqueous saturations normalized by total fluid phase saturation implicitly affected by the dynamic formation and dissociation of hydrates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!