Shear transformation distribution and activation in glasses at the atomic scale.

Phys Rev E

Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, F-69622 Villeurbanne Cedex, France.

Published: March 2017

We characterize shear transformations (STs) at the atomic scale in a model of amorphous silicon using a mapping on Eshelby inclusions. We investigate the effect of pressure, glass relaxation, as well as damage on the ST characteristics. We show that the characteristic ST effective volume, γ_{0}V_{0}, product of the ST plastic shear strain γ_{0} and volume V_{0}, does not depend significantly on an applied pressure but increases with accumulated plastic deformation from about 10Å^{3} in the pseudoelastic regime to about 60Å^{3} once plastic flow sets in. Furthermore, by using nudged elastic band calculations, we measure the energy barrier against ST activation. Analyzing different paths leading to either an isolated ST or an avalanche, we show that the barrier is systematically controlled by the first ST with an activation volume equal to the effective volume of the ST at the activated state, which represents only a fraction of the complete ST volume. The activation volume is also found smaller for avalanches, presumably because of accumulated local damage. This work provides essential information to build reliable mesoscale models of plasticity.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.95.033005DOI Listing

Publication Analysis

Top Keywords

atomic scale
8
effective volume
8
activation volume
8
volume
6
shear transformation
4
transformation distribution
4
activation
4
distribution activation
4
activation glasses
4
glasses atomic
4

Similar Publications

Anisotropy is a fundamental property of both material and photonic systems. The interplay between material and photonic anisotropies, however, has hardly been explored due to the vastly different length scales. Here we demonstrate exciton polaritons in a 2D antiferromagnet, CrSBr, coupled with an anisotropic photonic crystal cavity, where the spin, atomic, and photonic anisotropies are strongly correlated.

View Article and Find Full Text PDF

Analytical Model for Atomic Relaxation in Twisted Moiré Materials.

Phys Rev Lett

December 2024

National University of Singapore, Department of Materials Science and Engineering, 9 Engineering Drive 1, Singapore 117575.

By virtue of being atomically thin, the electronic properties of heterostructures built from two-dimensional materials are strongly influenced by atomic relaxation. The atomic layers behave as flexible membranes rather than rigid crystals. Here we develop an analytical theory of lattice relaxation in twisted moiré materials.

View Article and Find Full Text PDF

Identical Fe-N Sites with Different Reactivity: Elucidating the Effect of Support Curvature.

ACS Appl Mater Interfaces

January 2025

CEITEC-Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic.

Detailed atomic-scale understanding is a crucial prerequisite for rational design of next-generation single-atom catalysts (SACs). However, the sub-ångström precision needed for systematic studies is challenging to achieve on common SACs. Here, we present a two-dimensional (2D) metal-organic system featuring Fe-N single-atom sites, where the metal-organic structure is modulated by 0.

View Article and Find Full Text PDF

Removal of Cr(VI) from aqueous solutions by activated carbon and its composite with PWO: A spectroscopic study to reveal adsorption mechanism.

Heliyon

January 2025

Nuclear Chemistry Division, Department of Chemistry, Atomic Energy Commission, P. O. Box: 9061, Damascus, Syrian Arab Republic.

Molecular scale information is needed to understand ions coordination to mineral surfaces and consequently to accelerate the design of improved adsorbents. The present work reports on the use of two-dimensional correlation Fourier Transform infra-red spectroscopy (2D-COS-FTIR) and hetero 2D-COS-FTIR- X-ray diffraction (XRD) to probe the mechanism of Cr(VI) removal from aqueous solutions by activated carbon (AC) and its composite with PWO (AC-composite). The adsorption data at an initial Cr(VI) concentration of 320 mg L (320 ppm) revealed maximum adsorption capacities of 65 mg g for AC and 73 mg g for AC-composite, corresponding to removal percentages of 83 % and 94 %, respectively.

View Article and Find Full Text PDF

Rationally manipulating the in-situ formed catalytically active surface of catalysts remains a significant challenge for achieving highly efficient water electrolysis. Herein, we present a bias-induced activation strategy to modulate in-situ Ga leaching and trigger the dynamic surface restructuring of lamellar Ir@Ga2O3 for the electrochemical oxygen evolution reaction. The in-situ reconstructed Ga-O-Ir interface sustains high water oxidation rates at OER overpotentials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!