Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We study the evolution leading to (or regressing from) a large fluctuation in a statistical mechanical system. We introduce and study analytically a simple model of many identically and independently distributed microscopic variables n_{m} (m=1,M) evolving by means of a master equation. We show that the process producing a nontypical fluctuation with a value of N=∑_{m=1}^{M}n_{m} well above the average 〈N〉 is slow. Such process is characterized by the power-law growth of the largest possible observable value of N at a given time t. We find similar features also for the reverse process of the regression from a rare state with N≫〈N〉 to a typical one with N≃〈N〉.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.95.032136 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!