Purine nucleoside analogues are widely used in the treatment of haematological malignancies, and their biological activity is dependent on the intracellular accumulation of their triphosphorylated metabolites. In this context, we developed and validated a liquid chromatography tandem mass spectrometry (LC-MS/MS) method to study the formation of 5'-triphosphorylated derivatives of cladribine, fludarabine, clofarabine and 2'-deoxyadenosine in human cancer cells. Br-ATP was used as internal standard. Separation was achieved on a hypercarb column. Analytes were eluted with a mixture of hexylamine (5 mM), DEA (0.4%, v/v, pH 10.5) and acetonitrile, in a gradient mode at a flow rate of 0.3mLmin. Multiple reactions monitoring (MRM) and electrospray ionization in negative mode (ESI-) were used for detection. The application of this method to the quantification of these phosphorylated cytotoxic compounds in a human follicular lymphoma cell line, showed that it was suitable for the study of relevant biological samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jchromb.2017.03.024 | DOI Listing |
BMC Pharmacol Toxicol
January 2025
Biochemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
Background: Naringenin, a flavonoid compound found in citrus fruits, possesses valuable anticancer properties. However, its potential application in cancer treatment is limited by poor bioavailability and pharmacokinetics at tumor sites. To address this, Naringenin nanoparticles (NARNPs) were prepared using the emulsion diffusion technique and their anticancer effects were investigated in HepG2 cells.
View Article and Find Full Text PDFBMC Womens Health
January 2025
Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK.
Background: S. haematobium is a recognized carcinogen and is associated with squamous cell carcinoma of the bladder. Its association with high-risk(HR) human papillomavirus (HPV) persistence, cervical pre-cancer and cervical cancer incidence has not been fully explored.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.
Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.
View Article and Find Full Text PDFBMC Med Genomics
January 2025
Yuyao People's Hospital of Zhejiang Province, Ningbo, Zhejiang, China.
Enhancer RNA (eRNA) has emerged as a key player in cancer biology, influencing various aspects of tumor development and progression. In this study, we investigated the role of eRNAs in kidney renal clear cell carcinoma (KIRC), the most common subtype of renal cell carcinoma. Leveraging high-throughput sequencing data and bioinformatics analysis, we identified differentially expressed eRNAs in KIRC and constructed eRNA-centric regulatory networks.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
Objective: Rapid on-site evaluation (ROSE) of respiratory cytology specimens is a critical technique for accurate and timely diagnosis of lung cancer. However, in China, limited familiarity with the Diff-Quik staining method and a shortage of trained cytopathologists hamper utilization of ROSE. Therefore, developing an improved deep learning model to assist clinicians in promptly and accurately evaluating Diff-Quik stained cytology samples during ROSE has important clinical value.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!