The proper representation of the search space is the fundamental step in every optimization task, because it has a decisive impact on the quality of potential solutions. In particular, this problem appears when the search spaces are nonstandard and complex, with the large number of candidate solutions that differ from classical forms usually investigated. One of such spaces is the set of continuous-time, homogenous, and stationary Markov processes. They are commonly used to describe biological phenomena, for example, mutations in DNA sequences and their evolution. Because of the complexity of these processes, the representation of their search space is not an easy task but it is important for effective solving of the biological problems. One of them is optimality of mutational pressure acting on protein-coding sequences. Therefore, we described three representations of the search spaces and proposed several specific evolutionary operators that are used in evolutionary-based optimization algorithms to solve the biological problem of mutational pressure optimality. In addition, we gave a general formula for the fitness function, which can be used to measure the quality of potential solutions. The structures of these solutions are based on two models of DNA evolution described by substitution-rate matrices, which are commonly used in phylogenetic analyzes. The proposed representations have been successfully utilized in various issues, and the obtained results are very interesting from a biological point of view. For example, they show that mutational pressures are, to some extent, optimized to minimize cost of amino acid substitutions in proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1089/cmb.2017.0017DOI Listing

Publication Analysis

Top Keywords

search spaces
12
mutational pressure
12
representations search
8
problem mutational
8
protein-coding sequences
8
representation search
8
search space
8
quality potential
8
potential solutions
8
spaces
4

Similar Publications

As the Internet becomes increasingly popular, the number of users connected to it grows significantly. Consequently, the packet processing speed of network systems, such as routers, must be enhanced. IP lookup is a critical task used to find the next hop address by searching for the longest prefix match in the forwarding information base (FIB).

View Article and Find Full Text PDF

Spaceflight has several detrimental effects on human and rodent health. For example, liver dysfunction is a common phenotype observed in space-flown rodents, and this dysfunction is partially reflected in transcriptomic changes. Studies linking transcriptomics with liver dysfunction rely on tools which exploit correlation, but these tools make no attempt to disambiguate true correlations from spurious ones.

View Article and Find Full Text PDF

FedKD-CPI: Combining the federated knowledge distillation technique to accomplish synergistic compound-protein interaction prediction.

Methods

January 2025

School of Computer Science and Engineering, Central South University, Changsha 410083, China; Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha 410083, China.

Compound-protein interaction (CPI) prediction is critical in the early stages of drug discovery, narrowing the search space for CPIs and reducing the cost and time required for traditional high-throughput screening. However, CPI-related data are usually distributed across different institutions and their sharing is restricted because of data privacy and intellectual property rights. Constructing a scheme that enhances multi-institutional collaboration to improve prediction accuracy while protecting data privacy is essential.

View Article and Find Full Text PDF

Visualising Analytes in Gas Chromatography by Staining and Substance Maps.

Talanta

January 2025

Institute of Chemistry of Renewable Resources, Department of Chemistry, BOKU University, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria. Electronic address:

Chromatographic separations in combination with spectroscopic detectors are a main pillar of today's analytical chemistry. The recorded spectroscopic data is usually not shown in a typical chromatogram, therefore the contained additional information cannot be accessed readily by the analyst and is inspected in tedious additional routines, such as separate database searches. We developed a method to add colors to gas chromatograms with mass spectral detection.

View Article and Find Full Text PDF

A common problem when analyzing ancient DNA (aDNA) data is to identify the species which corresponds to the recovered aDNA sequence(s). The standard approach is to deploy sequence similarity based tools, such as BLAST. However, as aDNA reads may frequently stem from unsampled taxa due to extinction, it is likely that there is no exact match in any database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!