Cytochromes P450 (CYP) are involved in numerous biochemical processes including metabolism of xenobiotics, biosynthesis of cholesterol, steroid hormones etc. Since some CYP catalyze indol oxidation to isatin, we have hypothesized that isatin can regulate protein-protein interactions (PPI) between components of the CYP system thus representing a (negative?) feedback mechanism. The aim of this study was to investigate a possible effect of isatin on interaction of human CYP with cytochrome b5 (CYB5A). Using the optical biosensor test system employing surface plasmon resonance (SPR) we have investigated interaction of immobilized CYB5A with various CYP in the absence and in the presence of isatin. The SPR-based experiments have shown that a high concentration of isatin (270 mM) increases Kd values for complexes CYB5A/CYP3А5 and CYB5A/CYP3A4 (twofold and threefold, respectively), but has no influence on complex formation between CYB5A and other CYP (including indol-metabolizing CYP2C19 and CYP2E1). Isatin injection to the optical biosensor chip with the preformed molecular complex CYB5A/CYP3A4 caused a 30%-increase in its dissociation rate. Molecular docking manipulations have shown that isatin can influence interaction of CYP3А5 or CYP3A4 with CYB5A acting at the contact region of CYB5A/CYP.

Download full-text PDF

Source
http://dx.doi.org/10.18097/PBMC20176302170DOI Listing

Publication Analysis

Top Keywords

protein-protein interactions
8
optical biosensor
8
cyb5a cyp
8
isatin
7
cyp
6
[the isatin
4
isatin protein-protein
4
interactions cytochrome
4
cytochrome cytochromes
4
cytochromes p450]
4

Similar Publications

Clinical evidence increasingly suggests that traditional treatments for dysfunctional uterine bleeding (DUB) have limited success. In this study, blood samples from 10 DUB patients and 10 healthy controls were collected for transcriptome sequencing. Then, the differentially expressed genes (DEGs) were screened and crossed with the DUB-related module genes to obtain the target genes.

View Article and Find Full Text PDF

L. has exhibited various pharmacological effects, yet its anticancer activities against colorectal cancer (CRC) and underlying molecular mechanisms remain unclear. This study investigated the anticancer properties of an ethanol extract of L.

View Article and Find Full Text PDF

Tartary buckwheat is a nutrient-rich pseudo-cereal whose starch contents, including amylose and amylopectin contents, and their properties hold significant importance for enhancing yield and quality. The granule-bound starch synthase (GBSS) is a key enzyme responsible for the synthesis of amylose, directly determining the amylose content and amylose-to-amylopectin ratio in crops. Although one has already been cloned, the genes at the genome-wide level have not yet been fully assessed and thoroughly analyzed in Tartary buckwheat.

View Article and Find Full Text PDF

Post-translational modifications (PTMs) of proteins dynamically build the buffering and adapting interface between oncogenic mutations and environmental stressors, on the one hand, and cancer cell structure, functioning, and behavior. Aberrant PTMs can be considered as enabling characteristics of cancer as long as they orchestrate all malignant modifications and variability in the proteome of cancer cells, cancer-associated cells, and tumor microenvironment (TME). On the other hand, PTMs of proteins can enhance anticancer mechanisms in the tumoral ecosystem or sustain the beneficial effects of oncologic therapies through degradation or inactivation of carcinogenic proteins or/and activation of tumor-suppressor proteins.

View Article and Find Full Text PDF

Establishment of a Yeast Two-Hybrid-Based High-Throughput Screening Model for Selection of SARS-CoV-2 Spike-ACE2 Interaction Inhibitors.

Int J Mol Sci

January 2025

State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.

The recent coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has exerted considerable impact on global health. To prepare for rapidly mutating viruses and for the forthcoming pandemic, effective therapies targeting the critical stages of the viral life cycle need to be developed. Viruses are dependent on the interaction between the receptor-binding domain (RBD) of the viral Spike (S) protein (S-RBD) and the angiotensin-converting enzyme 2 (ACE2) receptor to efficiently establish infection and the following replicate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!