Objectives: Longitudinal research indicates that cognitive load dual-task gait assessment is predictive of cognitive decline and thus might provide a sensitive measure to screen for mild cognitive impairment (MCI). However, research among older adults being clinically evaluated for cognitive concerns, a defining feature of MCI, is lacking. The present study investigated the effect of performing a cognitive task on normal walking speed in patients presenting to a memory clinic with cognitive complaints.
Methods: Sixty-one patients with a mean age of 68 years underwent comprehensive neuropsychological testing, clinical interview, and gait speed (simple- and dual-task conditions) assessments. Thirty-four of the 61 patients met criteria for MCI.
Results: Repeated measure analyses of covariance revealed that greater age and MCI both significantly associated with slower gait speed, ps<.05. Follow-up analysis indicated that the MCI group had significantly slower dual-task gait speed but did not differ in simple-gait speed. Multivariate linear regression across groups found that executive attention performance accounted for 27.4% of the variance in dual-task gait speed beyond relevant demographic and health risk factors.
Conclusions: The present study increases the external validity of dual-task gait assessment of MCI. Differences in dual-task gait speed appears to be largely attributable to executive attention processes. These findings have clinical implications as they demonstrate expected patterns of gait-brain behavior relationships in response to a cognitive dual task within a clinically representative population. Cognitive load dual-task gait assessment may provide a cost efficient and sensitive measure to detect older adults at high risk of a dementia disorder. (JINS, 2017, 23, 493-501).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S1355617717000261 | DOI Listing |
Clin Orthop Relat Res
December 2024
Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO, USA.
Background: Patients with transfemoral amputation experience socket-related problems and musculoskeletal overuse injuries, both of which are exacerbated by asymmetric joint loading and alignment. Bone-anchored limbs are a promising alternative to treat chronic socket-related problems by directly attaching the prosthesis to the residual limb through an osseointegrated implant; however, it remains unknown how changes in alignment facilitated through a bone-anchored limb relate to loading asymmetry.
Questions/purposes: What is the association between femur-pelvis alignment and hip loading asymmetry during walking before and 12 months after transfemoral bone-anchored limb implantation?
Methods: Between 2019 and 2022, we performed 66 bone-anchored limb implantation surgeries on 63 individuals with chronic socket-related problems.
Arch Gerontol Geriatr
December 2024
Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China; National Health Committee (NHC) Key Lab of Health Economics and Policy Research, Shandong University, Jinan, 250012, China; Institute of Health and Elderly Care, Shandong University, Jinan, 250012, China. Electronic address:
Background: Previous studies showed that physical performance was associated with mild cognitive impairment (MCI). As the easily measured aging biomarkers, grip strength and gait speed could effectively reflect physical function. However, whether grip strength, gait speed, and the combination of the two were bidirectionally associated with MCI and specific cognitive function domains, have not been explored.
View Article and Find Full Text PDFFront Physiol
December 2024
MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, Brazil.
Introduction: This study aimed to investigate whether individualizing autonomic recovery periods between resistance training (RT) sessions (IND) using heart rate variability (HRV), measured by the root mean square of successive R-R interval differences (RMSSD), would lead to greater and more consistent improvements in muscle strength, muscle mass, and functional performance in older women compared to a fixed recovery protocol (FIX).
Methods: Twenty-one older women (age 66.0 ± 5.
Front Bioeng Biotechnol
December 2024
Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ, United States.
Introduction: Walking is essential for daily life but poses a significant challenge for many individuals with neurological conditions like cerebral palsy (CP), which is the leading cause of childhood walking disability. Although lower-limb exoskeletons show promise in improving walking ability in laboratory and controlled overground settings, it remains unknown whether these benefits translate to real-world environments, where they could have the greatest impact.
Methods: This feasibility study evaluated whether an untethered ankle exoskeleton with an adaptable controller can improve spatiotemporal outcomes in eight individuals with CP after low-frequency exoskeleton-assisted gait training on real-world terrain.
Front Bioeng Biotechnol
December 2024
Faculty of Sports Science, Ningbo University, Ningbo, China.
During pregnancy, women undergo significant physiological, hormonal, and biomechanical changes that influence their gait. The forward shift of the center of mass and increased joint loads often result in a "waddling gait," elevating the risk of falls. While gait changes during pregnancy have been documented, findings across studies remain inconsistent, particularly regarding variations at different pregnancy stages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!