The eternal or ultimate goal of medicinal chemistry is to find most effective ways to treat various diseases and extend human beings' life as long as possible. Human being is a biological entity. To realize such an ultimate goal, the inputs or breakthroughs from the advances in biological science are no doubt most important that may even drive medicinal science into a revolution. In this review article, we are to address this from several different angles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1568026617666170414145508 | DOI Listing |
Brief Bioinform
November 2024
Biotherapeutics Molecule Discovery, Boehringer Ingelheim Pharmaceutical Inc., 900 Ridgebury Road, Ridgefield, CT 06877, United States.
Antibody generation requires the use of one or more time-consuming methods, namely animal immunization, and in vitro display technologies. However, the recent availability of large amounts of antibody sequence and structural data in the public domain along with the advent of generative deep learning algorithms raises the possibility of computationally generating novel antibody sequences with desirable developability attributes. Here, we describe a deep learning model for computationally generating libraries of highly human antibody variable regions whose intrinsic physicochemical properties resemble those of the variable regions of the marketed antibody-based biotherapeutics (medicine-likeness).
View Article and Find Full Text PDFHum Gene Ther
January 2025
Department of Internal Medicine V, University Hospital Schleswig-Holstein and University of Kiel, Kiel, Germany.
Adeno-associated viral (AAV) vectors are increasingly used for preclinical and clinical cardiac gene therapy approaches. However, gene transfer to cardiomyocytes poses a challenge due to differences between AAV serotypes in terms of expression efficiency and . For example, AAV9 vectors work well in rodent heart muscle cells but not in cultivated neonatal rat ventricular cardiomyocytes (NRVCMs), necessitating the use of AAV6 vectors for studies.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI Universidade de Vigo Vigo Spain.
The Asteraceae family has been of significant concern for ethnobotanical studies, thanks to its health-promoting properties linked to a plethora of bioactive compounds, among which phenolic compounds play a critical role. In this work, a workflow based on computational chemometrics was employed to assess the authenticity and biomarker search of five key Asteraceae species commonly employed in traditional medicine. The UHPLC-DAD-ESI/MS-MS phenolic profile of Asteraceae extracts was combined with the evaluation of several in vitro biological properties.
View Article and Find Full Text PDFToxicol Res (Camb)
February 2025
Department of chemistry, Emerson University Multan, Multan 60000, Pakistan.
Since the Industrial Revolution, ecological damage, ecosystem disruption, and climate change acceleration have frequently resulted from human advancement at the price of the environment. Due to the rise in illnesses, Industry 6.0 calls for a renewed dedication to sustainability with latest technologies.
View Article and Find Full Text PDFNanoscale Adv
December 2024
Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University Taif 21944 Saudi Arabia.
Mesoporous materials have garnered significant interest because of their porous structure, large surface area and ease of surface functionalization to incorporate the functional groups of choice. Herein, chiral mesoporous silica nanoparticles (CMSNPs) were prepared using quaternary amino silane as the template, tetramethyl orthosilicate as the silica source and proline and cellulose as chiral selector. The developed CMSNPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction analysis, BET surface area analysis and BJH pore size/volume analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!