Background: Glucose variations are common throughout sleep and wakefulness in people with type 1 diabetes mellitus (T1DM). The objective of this investigation was to characterize the time-varying coupling between glucose and unstructured physical activity over a 60-hr period in young adults with T1DM. The hypothesis was that coupling would differ during sleep versus wakefulness and would exhibit circadian variations.
Method: Young adults with T1DM treated with an insulin pump participated in the study. Glucose variations were monitored with a continuous glucose monitoring system, and activity was assessed using an activity-monitoring band worn on the nondominant wrist. Simultaneous glucose and physical activity data across a continuous 60-hr period were used for analysis. Wavelet coherence analysis was employed to quantify the coupling between physical activity and glucose. Cosinor analysis was used to assess whether glucose/activity coherence exhibited significant circadian variations.
Results: Participants comprised 23 adults, aged 18-30 years, with T1DM. Coherence analysis demonstrated substantial coupling between physical activity and glucose variations during both wakefulness and sleep. For rapid (10-30 min) fluctuations, mean coherence was higher during sleep than wakefulness ( F = 10.86, p = .003). Rapid glucose variations consistently led to changes in activity ( p = .001) during sleep but not during wake. Cosinor analysis revealed significant circadian modulation of glucose/activity coupling, especially for fluctuation periods 2-4 hr.
Conclusions: Unstructured physical activity and glucose variations demonstrated strong time- and frequency-dependent coupling over a 60-hr period in young adults with T1DM, with sleep/wake differences and circadian modulation evident in this relationship.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5942493 | PMC |
http://dx.doi.org/10.1177/1099800416685177 | DOI Listing |
J Diabetes Sci Technol
January 2025
Unit of Endocrine Diseases and Diabetology, Department of Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy.
Aims: According to the 2023 International Consensus, glucose metrics derived from two-week-long continuous glucose monitoring (CGM) can be extrapolated up to 90 days before. However, no studies have focused on adults with type 1 diabetes (T1D) on multiple daily injections (MDIs) and with second-generation intermittently scanned CGM (isCGM) sensors in a real-world setting.
Methods: This real-world, retrospective study included 539 90-day isCGM data from 367 adults with T1D on MDI therapy.
J Ovarian Res
January 2025
Departments of Endocrinology, Sheri Kashmir Institute of Medical Sciences, Srinagar, J&K, India.
Background: A significant overlap in the pathophysiological features of polycystic ovary syndrome (PCOS) and type 2 diabetes mellitus (T2DM) has been reported; and insulin resistance is considered a central driver in both. The expression and hepatic clearance of insulin and subsequent glucose homeostasis are mediated by TCF7L2 via Wnt signaling. Studies have persistently associated TCF7L2 genetic variations with T2DM, however, its results on PCOS are sparse and inconsistent.
View Article and Find Full Text PDFCurr Res Food Sci
December 2024
Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via G. Campi, 103, 41125 Modena, Italy.
Stable isotope analysis has become a valuable tool for studying food chain processes and verifying the authenticity and geographical origin of typical products. The analysis is particularly important for those foods with geographical indications, such as Aceto Balsamico Tradizionale di Modena labelled with the protected designation of origin mark (ABTM PDO) and Aceto Balsamico di Modena with the protected geographical indication (ABM PGI). Understanding how the aging process affects the isotopic composition of specific compounds in ABTM is important for distinguishing between traditional and non-traditional products, as well as for verifying their authenticity.
View Article and Find Full Text PDFiScience
December 2024
Laboratory of Translational Obesity Research, New York University Langone Health, New York, NY 10016, USA.
Early time-restricted eating (eTRE) is a dietary strategy that restricts caloric intake to the first 6-8 h of the day and can effect metabolic benefits independent of weight loss. However, the extent of these benefits is unknown. We conducted a randomized crossover feeding study to investigate the weight-independent effects of eTRE on glycemic variation, multiple time-in-range metrics, and levels of inflammatory markers.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, China.
Background: The debate persists regarding whether metabolic dysfunction-associated steatotic liver disease (MASLD) actively contributes to coronary heart disease or merely acts as a passive indicator.
Objective: This research aims to clarify the relationship between liver fat accumulation, as quantified by FLI, and the risk of developing coronary heart disease.
Methods: Conducted from April to November 2011, the REACTION project, spearheaded by the Endocrinology Branch of the Chinese Medical Association, focused on Chinese adults aged 40 and above.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!