Background: Peatlands play an important role in the global carbon cycle. They provide important ecosystem services including carbon sequestration and storage. Drainage disturbs peatland ecosystem services. Mapping drains is difficult and expensive and their spatial extent is, in many cases, unknown. An object based image analysis (OBIA) was performed on a very high resolution satellite image (Geoeye-1) to extract information about drain location and extent on a blanket peatland in Ireland. Two accuracy assessment methods: Error matrix and the completeness, correctness and quality (CCQ) were used to assess the extracted data across the peatland and at several sub sites. The cost of the OBIA method was compared with manual digitisation and field survey. The drain maps were also used to assess the costs relating to blocking drains vs. a business-as-usual scenario and estimating the impact of each on carbon fluxes at the study site.
Results: The OBIA method performed well at almost all sites. Almost 500 km of drains were detected within the peatland. In the error matrix method, overall accuracy (OA) of detecting the drains was 94% and the kappa statistic was 0.66. The OA for all sub-areas, except one, was 95-97%. The CCQ was 85%, 85% and 71% respectively. The OBIA method was the most cost effective way to map peatland drains and was at least 55% cheaper than either field survey or manual digitisation, respectively. The extracted drain maps were used constrain the study area CO flux which was 19% smaller than the prescribed Peatland Code value for drained peatlands.
Conclusions: The OBIA method used in this study showed that it is possible to accurately extract maps of fine scale peatland drains over large areas in a cost effective manner. The development of methods to map the spatial extent of drains is important as they play a critical role in peatland carbon dynamics. The objective of this study was to extract data on the spatial extent of drains on a blanket bog in the west of Ireland. The results show that information on drain extent and location can be extracted from high resolution imagery and mapped with a high degree of accuracy. Under Article 3.4 of the Kyoto Protocol Annex 1 parties can account for greenhouse gas emission by sources and removals by sinks resulting from "wetlands drainage and rewetting". The ability to map the spatial extent, density and location of peatlands drains means that Annex 1 parties can develop strategies for drain blocking to aid reduction of CO emissions, DOC runoff and water discoloration. This paper highlights some uncertainty around using one-size-fits-all emission factors for GHG in drained peatlands and re-wetting scenarios. However, the OBIA method is robust and accurate and could be used to assess the extent of drains in peatlands across the globe aiding the refinement of peatland carbon dynamics .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5344874 | PMC |
http://dx.doi.org/10.1186/s13021-017-0075-z | DOI Listing |
Sci Data
January 2025
Centre for Automation and Robotics (CAR), Spanish National Research Council (CSIC), 28006, Madrid, Spain.
This study highlights the vital role of high-resolution (HR), open-source land cover maps for food security, land use planning, and environmental protection. The scarcity of freely available HR datasets underscores the importance of multi-spectral HR aerial images. We used unmanned aerial vehicle (UAV) to capture images for a centimeter-level orthomosaics, facilitating advanced remote sensing and spatial analysis.
View Article and Find Full Text PDFPLoS One
November 2024
Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, MB, Canada.
Very high-resolution (VHR) satellite imagery has proven to be useful for detection of large to medium cetaceans, such as odontocetes and offers some significant advantages over traditional detection methods. However, the significant time investment needed to manually read satellite imagery is currently a limiting factor to use this method across large open ocean regions. The objective of this study is to develop a semi-automated detection method using object-based image analysis to identify beluga whales (Delphinapterus leucas) in open water (summer) ocean conditions in the Arctic using panchromatic WorldView-3 satellite imagery and compare the detection time between human read and algorithm detected imagery.
View Article and Find Full Text PDFFront Plant Sci
June 2024
Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium.
Introduction: Growing grass-legume mixtures for forage production improves both yield productivity and nutritional quality, while also benefiting the environment by promoting species biodiversity and enhancing soil fertility (through nitrogen fixation). Consequently, assessing legume proportions in grass-legume mixed swards is essential for breeding and cultivation. This study introduces an approach for automated classification and mapping of species in mixed grass-clover swards using object-based image analysis (OBIA).
View Article and Find Full Text PDFSci Total Environ
September 2024
Institute of Atmospheric Environment, China Meteorological Administration, Shenyang 110166, China.
Accurately estimating the net ecosystem exchange of CO (NEE) in cropland ecosystems is essential for understanding the impacts of agricultural practices and climate conditions. However, significant uncertainties persist in the estimation of regional cropland NEE due to landscape heterogeneity and variations in the efficacy of upscaling models. Here, we applied an integrated approach that combined object-based image analysis (OBIA) techniques with advanced machine learning (ML) approaches to upscale regional cropland NEE.
View Article and Find Full Text PDFSci Rep
April 2024
Department of Geoinformatics - Z_GIS, University of Salzburg, Salzburg, Austria.
Monitoring burned areas in Thailand and other tropical countries during the post-harvest season is becoming increasingly important. High-resolution remote sensing data from Sentinel-2 satellites, which have a short revisit time, is ideal for accurately and efficiently mapping burned regions. However, automating the mapping of agriculture residual on a national scale is challenging due to the volume of information and level of detail involved.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!