Background: Epidemiologic studies have linked inhalation of air pollutants such as ozone to cardiovascular mortality. Human exposure studies have shown that inhalation of ambient levels of ozone causes airway and systemic inflammation and an imbalance in sympathetic/parasympathetic tone.

Methods: To explore molecular mechanisms through which ozone inhalation contributes to cardiovascular mortality, we compared transcriptomics data previously obtained from bronchoalveolar lavage (BAL) cells obtained from healthy subjects after inhalational exposure to ozone (200 ppb for 4 h) to those of various cell samples from 11 published studies of patients with atherosclerotic disease using the Nextbio genomic data platform. Overlapping gene ontologies that may be involved in the transition from pulmonary to systemic vascular inflammation after ozone inhalation were explored. Local and systemic enzymatic activity of an overlapping upregulated gene, matrix metalloproteinase-9 (MMP-9), was measured by zymography after ozone exposure.

Results: A set of differentially expressed genes involved in response to stimulus, stress, and wounding were in common between the ozone and most of the atherosclerosis studies. Many of these genes contribute to biological processes such as cholesterol metabolism dysfunction, increased monocyte adherence, endothelial cell lesions, and matrix remodeling, and to diseases such as heart failure, ischemia, and atherosclerotic occlusive disease. Inhalation of ozone increased MMP-9 enzymatic activity in both BAL fluid and serum.

Conclusions: Comparison of transcriptomics between BAL cells after ozone exposure and various cell types from patients with atherosclerotic disease reveals commonly regulated processes and potential mechanisms by which ozone inhalation may contribute to progression of pre-existent atherosclerotic lesions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7456636PMC
http://dx.doi.org/10.1080/08958378.2017.1310333DOI Listing

Publication Analysis

Top Keywords

ozone inhalation
12
ozone
11
vascular inflammation
8
inhalation ambient
8
ambient levels
8
levels ozone
8
cardiovascular mortality
8
mechanisms ozone
8
bal cells
8
patients atherosclerotic
8

Similar Publications

Airway microbiota dysbiosis and metabolic disorder in ozone and PM co-exposure induced lung inflammatory injury in mice.

Ecotoxicol Environ Saf

December 2024

School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China. Electronic address:

Co-exposure to ground-level ozone (O) and fine particles (PM, ≤ 2.5 µm in diameter) has become a primary scenario for air pollution exposure of urbanites in China. Recent studies have suggested a synergistic effect of PM and O on induction of lung inflammatory injury.

View Article and Find Full Text PDF

The burden of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its oxidized products on human health can no longer be ignored due to the detection types and concentrations in the environment continue to increase. Environmental ozone (O) and ultraviolet A (UVA) may induce ozonation and photoaging of 6PPD to produce toxic products. However, the impact of specific environmental conditions on the aging and toxic effects of 6PPD is unclear.

View Article and Find Full Text PDF

Epidemiologic studies of ambient fine particulate matter (PM) and ozone (O) often use outdoor concentrations from central-site monitors or air quality model estimates as exposure surrogates, which can result in exposure errors. We previously developed an exposure model called TracMyAir, which is an iPhone application that determines seven tiers of individual-level exposure metrics for ambient PM and O using outdoor concentrations, home building characteristics, weather, time-activities. The exposure metrics with increasing information needs and complexity include: outdoor concentration (C, Tier 1), building infiltration factor (F, Tier 2), indoor concentration (C, Tier 3), time spent in microenvironments (ME) (T, Tier 4), personal exposure factor (F, Tier 5), exposure (E, Tier 6), and inhaled dose (D, Tier 7).

View Article and Find Full Text PDF

From indoors to outdoors: Impact of waste anesthetic gases on occupationally exposed professionals and related environmental hazards - A narrative review and update.

Environ Toxicol Pharmacol

December 2024

São Paulo State University (UNESP), Medical School, Division of Anesthesiology, GENOTOX Lab., Botucatu, São Paulo, Brazil. Electronic address:

Waste anesthetic gases (WAGs) are trace-concentration inhaled anesthetics that exist worldwide because they are released into the ambient air of operating rooms (ORs) and post-anesthesia care units. WAGs cause indoor contamination, especially in ORs lacking proper scavenging systems, and occupational exposure, while promoting climate change through greenhouse gas/ozone-depleting effects. Despite these controversial features, WAGs continue to pose occupational health hazards.

View Article and Find Full Text PDF

In terms of infection control, environmental cleaning is critical in nursing homes, including long term care facilities. According to the statement of the Commission of Hospital Hygiene and Infection Prevention (KRINKO) at the Robert Koch Institute Berlin on the requirements for disinfectants in these areas, procedures should be used that have been certified by the Association for Applied Hygiene (VAH) for the necessary spectrum of efficacy (or are listed accordingly in the disinfectant list of the Robert Koch Institute). Since ozone is a powerfully oxidizing gas with high inhalation toxicity, the conditions of ap-plication and the measures for occupational safety - including ensuring that the limit value in indoor air is not exceeded when handling and using the product -, must be declared by the manufacturer and observed by the staff to exclude toxic long-term hazard.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!