Because reactive oxygen species are involved in a range of pathologies, developing analytical tools for this group of molecules opens new vistas for biomedical diagnostics. Herein, we fabricate a porous silicon microcavity (pSiMC) functionalized with luminescent singlet oxygen (O) probe EuA ((Eu(III)-2,2',2″-(10-(2-((4-(2-((4-(2-((anthracen-9-ylmethyl)amino)ethyl)-1H-1,2,3-triazol-1-yl)amino)-2-oxoethyl)-2-oxo-1,2-dihydroquinolin-7-yl)amino)-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid) as proof of concept of an optical sensor for reactive oxygen species. We characterize each surface modification step of the pSiMC by means of FTIR and X-ray photoelectron spectroscopy as well as by determining the optical shifts of the resonance wavelength of the pSiMC. The luminescence signal upon detection of O on the EuA-modified pSiMC is enhanced ∼2-fold compared to that of a single layer and a detuned microcavity. The sensing performance of the EuA probe is improved significantly on the pSiMC compared to that in aqueous solution, giving a limit of O detection of 3.7 × 10 M.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.7b00522DOI Listing

Publication Analysis

Top Keywords

singlet oxygen
8
porous silicon
8
reactive oxygen
8
oxygen species
8
psimc
5
oxygen detection
4
detection nanostructured
4
nanostructured porous
4
silicon thin
4
thin film
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!