Chemotherapy continues to play an essential role in the management of many cancers including colon cancer, the third leading cause of death due to cancer in the United States. Many naturally occurring plant compounds have been demonstrated to possess anti-cancer cell activity and have the potential to supplement existing chemotherapy strategies. The plant metabolite andrographolide induces cell death in cancer cells and apoptosis is dependent upon the induction of endoplasmic reticulum stress (ER stress) leading to the unfolded protein response (UPR). The goal of the present study was to determine the mechanism by which andrographolide induces ER stress and to further evaluate its role in promoting cell death pathways. The T84 and COLO 205 cancer cell lines were used to demonstrate that andrographolide induces increased ROS levels, corresponding anti-oxidant response molecules, and reduced mitochondrial membrane potential. No increases in ROS levels were detected in control colon fibroblast cells. Andrographolide-induced cell death, UPR signaling, and CHOP, Bax, and caspase 3 apoptosis elements were all inhibited in the presence of the ROS scavenger NAC. Additionally, andrographolide-induced suppression of cyclins B1 and D1 were also reversed in the presence of NAC. Finally, Akt phosphorylation and phospho-mTOR levels that are normally suppressed by andrographolide were also expressed at normal levels in the absence of ROS. These data demonstrate that andrographolide induces ER stress leading to apoptosis through the induction of ROS and that elevated ROS also play an important role in down-regulating cell cycle progression and cell survival pathways as well.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5432246PMC
http://dx.doi.org/10.18632/oncotarget.15393DOI Listing

Publication Analysis

Top Keywords

andrographolide induces
16
cell death
12
colon cancer
8
cancer cells
8
death cancer
8
stress leading
8
induces stress
8
demonstrate andrographolide
8
ros levels
8
cell
7

Similar Publications

Dehydroandrographolide Succinate Attenuates Dexamethasone-Induced Skeletal Muscle Atrophy by Regulating Akt/GSK3β and MuRF-1 Pathways.

Eur J Pharmacol

January 2025

Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea. Electronic address:

Andrographis paniculata (AGPA) is known for its wide-ranging biological activities, including antiviral, antipyretic, and anticancer properties. However, its effects on muscle atrophy have not been well understood. This study investigates the impact of andrographolide (AD) and dehydroandrographolide succinate (DAS), key components of AGPA, on skeletal muscle atrophy using in vitro and in vivo models.

View Article and Find Full Text PDF

Labdane diterpenoid lactone andrographolide has gained attention in medicinal research due to its potential anticancer properties in terms of suppression of the growth, propagation, and relocation of various types of cancerous cells. The current review provides deep insight into the pharmacological analysis of the anticancer secondary metabolite andrographolide. We have attempted to keep an overview on the interaction of promising drugs like ligand molecule andrographolide with various biological targets.

View Article and Find Full Text PDF

The journal retracts the article "Andrographolide Alleviates Oxidative Damage and Inhibits Apoptosis Induced by IHNV Infection via CTSK/BCL2/Cytc Axis" [...

View Article and Find Full Text PDF

Andrographolide mitigates neurotoxicity induced by lipopolysaccharide or amyloid-β through modulation of miR-222-mediated p62 and NF-κBp65 expression.

Eur J Pharmacol

February 2025

Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P.R. China. Electronic address:

MicroRNA-222 (miR-222) plays a crucial role in neurodegeneration and is up-regulated in Alzheimer's disease (AD) patients. Andrographolide (Andro) has been reported to have anti-inflammatory and neuroprotective effects, showing potential for treating AD. The relationship between Andro's anti-AD mechanism and the regulation of miR-222 was discussed in this study.

View Article and Find Full Text PDF

Background: Pathogenic degeneration of cartilage and the generation of fibrotic cartilage are crucial characteristics linked to the progression of osteoarthritis (OA). The current research aims to explore the potential function of the miR-137/BMP7 pathway in regulating the fibrogenic transition of chondrocytes associated with OA, as well as assess the therapeutic potential of andrographolide.

Methods: Samples of cartilage from the knees of patients with OA and individuals without OA were gathered to investigate the expression patterns of miR-137, BMP7, and markers associated with fibrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!